Skip to main content
Log in

Lower Talnakh Type Intrusions of the Norilsk Ore Region

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

Troctolites, olivine and picrite gabbrodolerites account for up to 75% of the Lower Talnakh type intrusions in areas of their elevated thickness, whereas reduced sections consist of olivine-free and olivine-bearing gabbrodolerites. The high-Mg cumulates show no clear differentiation, although the contents of TiO2 and alkalis increase towards the upper inner contacts. The transitions between the rock types are gradational, and the compositions of low-Ni olivine in different rocks (Fo70–83, 0.01–0.2 wt % NiO) overlap significantly. Clinopyroxene (Fs7–13, Mg# 68–89) is characterized by the lowest both contents and variation ranges of Cr2O3 (0.01–0.5 wt %) and TiO2 (0.05–1.0 wt %) among all types of the intrusions of the Norilsk complex, which is consistent with the Cr-depleted (0.002–0.051 wt % Cr2O3) bulk rock compositions. Later orthopyroxene (Fs15–30) is crystallized by the reaction of the residual melt with early olivine. Plagioclase forms porphyritic phenocrysts and their intergrowths along with ophitic laths, and also predominates in schlierens and fragments of leucocratic rocks in taxitic and picritic gabbrodolerites with a weakly sorted layered texture. In olivine-rich rocks, sulfides are represented by the association of troilite ± hexagonal pyrrhotite + Fe- and Co-rich pentlandite + Fe-enriched chalcopyrite (±putoranite, talnakhite) ± cubanite. The upper and lower parts of the intrusions contain association of hexagonal pyrrhotite + chalcopyrite + pentlandite, while monoclinic pyrrhotite + chalcopyrite + Ni-enriched pentlandite are formed in the inner- and outer contacts. The concentration of base (0.077–0.21 wt % Ni, 0.05–0.38 wt % Cu) and platinum metals (0.03–0.26 to 0.40 ppm total PGE) in mineralized rocks is very low. Upon small amounts of sulfides and extremely low base and platinum metal tenors, the heterogeneous S isotopic composition of the Lower Talnakh type sulfides (δ34S mainly 3.8–8.6‰, but reaches up to 11.8‰) most likely reflects the attainment of repeated sulfide saturation during the assimilation of sulfate S by magma that has previously experienced the loss of chalcophile metals into a coexisting sulfide liquid at a depth. The Sr-Nd isotopic compositions of the Lower Talnakh intrusions (Sri—from 0.7073 to 0.7087 and εNd(Т) from –1.8 to –5.9 calculated for 250 Ma) show the predominant contribution of the Proterozoic material, in contrast to the ore-bearing intrusions, which Sr-Nd isotope compositions indicate the contamination with Paleozoic upper crustal sedimentary rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

Notes

  1. Supplemetary materials for the Russian and English on-line versions of the paper at https://elibrary.ru/ and http://link.springer.com/ , are presented in Supplementary 1: ESM_1.pdf: Methods; ESM_2.pdf: Compositional variations of minerals throughout the vertical section; ESM_3.pdf: Position of the Lower Talnakh intrusion in the northwest-southeast section of the Talnakh ore field; ESM_4.pdf: Position of the Lower Talnakh intrusion in the NNW–SSW sub-meridional section of the Talnakh intrusion; ESM_5.pdf: Textures of rocks of the Lower Talnakh intrusion in the ZF-211 drill hole core; ESM_6.pdf: Compositions of minerals in rocks of the Lower Talnakh type intrusions; ESM_7.pdf: Whole rock compositions of the Lower Talnakh type intrusions compared to the whole rock compositions of other magmatic complexes of the Norilsk region; ESM_8.pdf: Hafnium isotope composition for zircons from intrusions of the Norilsk region; ESM_9.pdf: Compositions of rock-forming minerals of the Lower Talnakh intrusion (drill hole TG-31); ESM_10.pdf: Compositions of rock-forming minerals of the Lower Talnakh intrusion (drill hole OP-4); ESM_11.pdf: Compositions of rock-forming minerals of the Lower Norilsk intrusion (drill hole NP-37); ESM_12.pdf: Composition of rock-forming minerals of the Zelenaya Griva intrusion (drill hole F-233); ESM_13.pdf: Whole rock compositions of the Lower Talnakh type intrusions; ESM_14.pdf: REE distribution in rocks of the Lower Talnakh and Zelenaya Griva intrusions; ESM_15.pdf: Rb-Sr isotope data for rocks of the Lower Talnakh, Zelenaya Griva and Lower Norilsk intrusions; ESM_16.pdf: Rb-Sr isotope data for rock-forming minerals of the Lower Talnakh intrusion (drill hole TG-31); ESM_17.pdf: Sulfur, base metals and PGE abundances in rocks of the Lower Talnakh type intrusions; ESM_18.pdf: Composition of sulfides in rocks of the Lower Talnakh type intrusions; ESM_19.pdf: S and Cu isotope composition of sulfides in the Lower Talnakh type intrusions.

REFERENCES

  1. Arndt, N.T., Czamanske, G.K., and Walker, R.J., Geochemistry and origin of the intrusive hosts of the Noril’sk–Talnakh Cu–Ni–PGE sulfide deposits, Econ. Geol., 2003, vol. 98, pp. 495–515.

    Google Scholar 

  2. Avgustinchik, I.A., On the composition of sulfide mineralization in the Lower Talnakh intrusion, Genezis i usloviya lokalizatsii medno-nikelevogo orudeneniya (Genesis and Localization Conditions of the Copper–Nickel Mineralization), Moscow: TsNIGRI, 1981, pp. 34–40.

  3. Barnes, S.J. and Mole, D.R., Le Vaillant, M., et al., Poikilitic textures, heteradcumulates and zoned orthopyroxenes in the Ntaka ultramafic complex, Tanzania: implications for crystallization mechanisms of oikocrysts, J. Petrol., 2016, vol. 57, no. 6, pp. 1171–1198.

    Article  Google Scholar 

  4. Bychkova, Ya.V., Sinitsyn, M.Yu., and Petrenko, D.B., Method peculiarities of multielemental analysis of rocks with inductively-coupled plasma mass spectrometry, Moscow Univ. Geol. Bull., 2016, vol. 72, no. 1, pp. 56–62.

    Article  Google Scholar 

  5. Godlevskii, M.N., Trappy i rudonosnye intruzii Noril’skogo raiona (Traps and Ore-Bearing Intrusions of the Norilsk Region), Moscow: Gosgeoltekhizdat, 1959.

  6. Campbell, I.H., Some problems with the cumulus theory, Lithos, 1978, vol. 11, pp. 311–323.

    Article  Google Scholar 

  7. Chayka, I.F., Kamenetsky, V.S., Zhitova, L.M., et al., Hybrid nature of the platinum group element chromite-rich rocks of the Norilsk-1 intrusion: genetic constraints from Cr spinel and spinel-hosted multiphase inclusions, Econ. Geol., 2020, vol. 115, pp. 1321–1342.

    Article  Google Scholar 

  8. Czamanske, G.K., Kunilov, V.E., Zientek, H.L., et al., A proton-microprobe study of magmatic sulfi de ores from the Noril’sk–Talnakh district, Siberia, Can. Mineral., 1992, vol. 30, pp. 249–287.

    Google Scholar 

  9. Czamanske, G.K., Wooden, J.L., Zientek, H.L., et al., Geochemical and isotopic constrains of the petrogenesis of the Noril’sk–Talnakh ore-forming systems, Sudbury-Noril’sk Symposium, Ontario Geol. Surv. Spec., 1994, vol. 5, pp. 313–341.

  10. Czamanske, G.K., Wooden, J.L., Walker, R.J., et al., Geochemical, isotopic, and SHRIMP age data for Precambrian basement rocks, Permian volcanic rocks, and sedimentary host rocks to the ore-bearing intrusions, Noril’sk–Talnakh district, Siberian Russia, Int. Geol. Rev., 2000, vol. 42, no. 10, pp. 895–927.

    Article  Google Scholar 

  11. Dodin, D.A. and Sadikov, M.A., Some questions of differentiated traps by the example of the Kharaelakh Mountains, Petrologiya trappov Sibirskoi platform (Petrology of Traps of the Siberian Platform), Leningrad: Nedra, 1967, pp. 141–152.

    Google Scholar 

  12. Dyuzhikov, O.A., Distler, V.V., Strunin, B.M., et al., Geologiya i rudonosnost' Noril’skogo raiona (Geology and Ore Potential of the Norilsk Region), Moscow: Nedra, 1988.

  13. Fedorenko, V.A., Magmatizm i medno-nikelevye mestorozhdeniya Noril’skogo raiona (Magmatism and Copper–Nickel Deposits of the Norilsk Region), Noril’sk: Fondy Noril’skgeologii, 2010.

  14. Grinenko, L.N., Sources of sulfur of the nickeliferous and barren gabbro-dolerite intrusions of the northwest Siberian Platform, Int. Geol. Rev., 1985, vol. 28, pp. 695–708.

    Article  Google Scholar 

  15. Hawkesworth, C.J., Lightfoot, P.C., Fedorenko, V.A., et al., Magma differentiation and mineralisation in the Siberian flood basalts, Lithos, 1995, vol. 34, pp. 61–88.

    Article  Google Scholar 

  16. Izotopnaya geologiya noril’skikh mestorozhdenii (Isotope Geology of the Norilsk Deposits), Petrov, O.V, Eds., St. Petersburg: VSEGEI, 2017.

  17. Jerram, D.A., Dobson, K.J., Morgan, D.J., and Pankhurs, M.J., The petrogenesis of magmatic systems: using igneous textures to understand magmatic processes, Volcanic and Igneous Plumbing Systems, Burchardt, S., Eds., Amsterdam: Elsevier, 2018, pp. 191–229.

    Google Scholar 

  18. Ketrov, A.A., Yudovskaya, M.A., Shelukhina, Yu.S., et al., Sources and evolution of sulfur isotopic composition of sulfides of the Kharaelakh amd Pyasino–Vologochan intrusions, Norilsk ore region, Geol. Ore Deposits, 2022, vol. 64, no. 6, pp. 350–376.

    Article  Google Scholar 

  19. Komarova, M.Z. and Lyul’ko, T.P., On subdivision of trap intrusions of the Norilsk region, Petrologiya trappov Sibirskoi platform (Petrology of Traps of the Siberian Platform), Leningrad: Nedra, 1967, pp. 43–54.

    Google Scholar 

  20. Krivolutskaya, N.A., Evolyutsiya trappovogo magmatizma i Pt-Cu-Ni rudoobrazovanie v Noril’skom raione (Evolution of Trap Magmatism and Pt–Cu–Ni Ore Formation in the Norilsk Region), Moscow: Tovarishchestvo nauchnykh izdanii KMK, 2014.

  21. Krivolutskaya, N.A., Ariskin, A.A., Sluzhenikin, S.F., and Turovtsev, D.M., Geochemical thermometry of rocks of the Talnakh Intrusion: assessment of the melt composition and the crystallinity of the parental magma, Petrology, 2001, vol. 9, no. 5, pp. 389–414.

    Google Scholar 

  22. Krivolutskaya, N.A., Latyshev, A.V., Dolgal, A.S., et al., Unique PGE–Cu–Ni Norilsk deposits, siberian trap province: magmatic and tectonic factors in their origin, Minerals, 2019, vol. 9, no. 1, Art. 66.

    Article  Google Scholar 

  23. Krivolutskaya, N., Mikhailov, V., Gongalsky, B., et al., The Permian-Triassic riftogen rocks in the Norilsk area (NW Siberian Province): geochemistry and their possible link with PGE–Cu–Ni mineralization, Minerals, 2022, vol. 12, p. 1203.

    Article  Google Scholar 

  24. Larson, P.B., Maher, K., Ramos, F.C., et al., Copper isotope ratios in magmatic and hydrothermal ore-forming environments, Chem. Geol., 2003, vol. 201, nos. 3–4, pp. 337–350.

    Article  Google Scholar 

  25. Lightfoot, P.C., Naldrett, A.J., Gorbachev, N.S., et al., Geochemistry of the Siberian trap of the Noril’sk area, USSR, with implication for the relative contributions of crust and mantle to flood basalt magmatism, Contrib. Mineral. Petrol., 1990, vol. 104, pp. 631–644.

    Article  Google Scholar 

  26. Lightfoot, P.C., Hawkesworth, C.J., Hergt, J., et al., Remobilisation of the continental lithosphere by mantle plumes: major-, trace-element, and Sr-, Nd-, and Pb-isotope evidence from picritic and tholeiitic lavas of the Norilsk District, Siberian Trap, Russia, Contrib. Mineral. Petrol., 1993, vol. 114, pp. 171–188.

    Article  Google Scholar 

  27. Lightfoot, P.C., Naldrett, A.J., Gorbachev, N.S., et al., Chemostratigraphy of Siberian trap lavas, Noril’sk District: implications for the source of floodbasalt 1378 magmas and their associated Ni–Cu mineralization, Proc. Sudbury–Noril’sk Symposium. Ontario Geol. Surv. Spec., 1994, vol. 5, pp. 283–312.

  28. Likhachev, A.P., Platino-medno-nikelevye i platinovye mestorozhdeniya (Platinum–Copper–Nickel and Platinum Deposits), Moscow: Eslan, 2006.

  29. Likhachev, A.P., Ore-bearing intrusions of the Noril’sk region, Proc. Sudbury–Noril’sk Symposium. Ontario Geol. Surv. Spec., 1994, vol. 5, pp. 185–201.

  30. Lyul’ko, V.A., Amosov, Yu.N., and Lunin, E.B., Metallogenicheskaya karta (na med' i nikel') Severozapadnoi chasti Sibirskoi platformy masshtaba 1 : 200 000 (Metallogenic Map (for Copper and Nickel). Northwestern Siberian Platform on a Scale 1 : 200 000), Noril’sk: NKGRE, Fondy Noril’skgeologii, 1975.

  31. Le Maitre, R.W., Igneous Rocks. A Classification and Glossary of Terms. Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks, Cambridge: Cambridge University Press, 2002.

    Book  Google Scholar 

  32. Malitch, K.N., Badanina, I.Yu., Belousova, E.A., et al., Contrasting magmatic sources in the ultramafic intrusions of the Norilsk region (Russia): Hf isotope data in zircon, Ul’trabazit-bazitovye kompleksy skladchatykh oblastei i svyazannye s nimi mestorozhdeniya. Materialy III Mezhdunarodnoi konferentsii (Ultramafic–Mafic Complex of Orogenic Areas and Related Deposits. Proc. 3rd International Conference), Yekaterinburg: IGG UrO RAN, 2009, vol. 2, pp. 35–38.

  33. Malitch, K.N., Latypov, R.M., Badanina, I.Yu., and Sluzhenikin, S.F., Insights into ore genesis of Ni–Cu–PGE sulfide deposits of the Noril’sk province (Russia): evidence from copper and sulfur isotopes, Lithos, 2014, vol. 204, pp. 172–187.

    Article  Google Scholar 

  34. Malitch, K.N., Badanina, I.Yu., Tuganova, E.V., Rudonosnye ul’tramafit-mafitovye intruzivy Polyarnoi Sibiri: vozrast, usloviya obrazovaniya, kriterii prognoza (Ore-Bearing Ultramafic–Mafic Intrusions of the Polar Siberia: Age, Conditions of Formation, and Prediction Criteria) Ekaterinburg: IGG UrO RAN, 2018.

  35. Malitch, K.N., Belousova, E.A., Griffin, W.L., et al., New insights on the origin of ultramafic-mafic intrusions and associated Ni–Cu–PGE sulfide deposits of the Noril’sk and Taimyr provinces, Russia: evidence from radiogenic- and stable-isotope data, Processes and Ore Deposits of Ultramafic-Mafic Magmas Through Space and Time Mondal, S., Griffin, W.L., (Elsevier Inc, 2018), pp. 197–238. https://doi.org/10.1016/0012-821X(76)90219-3

  36. Matzen, A.K., Baker, M.B., Beckett, J.R., and Stolper, E.M., Fe–Mg partitioning between olivine and high-magnesian melts and the nature of Hawaiian parental liquids, J. Petrol., 2011, vol. 52, pp. 1243–1263.

    Article  Google Scholar 

  37. McDonough, W.F. and Sun, S.-S., The composition of the Earth, Chem. Geol., 1995, vol. 120, pp. 223–253.

    Article  Google Scholar 

  38. Naldrett, A.J., Lightfoot, P.C., Fedorenko, V.A., et al., Geology and geochemistry of intrusions and flood basalts of the Noril’sk region, USSR, with implication to the origin of the Ni–Cu ores, Econ. Geol., 1992, vol. 87, pp. 975–1004.

    Article  Google Scholar 

  39. Naldrett, A.J., Fedorenko, V.A., Lightfoot, P.C., et al., Ni–Cu–PGE deposits of Noril’sk region, Siberia: their formation in conduits for flood basalt volcanism, Trans. Inst. Min. Metall., Sect. B, 1995, vol. 104, pp. B18–B36.

    Google Scholar 

  40. Natorkhin, I.A., Arkhipova, A.I., and Batuev, B.N., Petrologiya talnakhskikh intruzii (Petrology of eh Talnakh Intrusions) Leningrad: Nedra, 1977.

  41. Okuneva, T.G., Karpova, S.V., Streletskaya, M.V., et al., The method for Cu and Zn isotope ratio determination by MC-ICP-MS using the AG-MP-1 resin, Geodynam. Tectonophys., 2022, vol. 13, no. 2s, 0615. https://doi.org/10.5800/GT-2022-13-2s-0615

  42. Paderin, P.G., Demenyuk, A.F., Nazarov, D.V., et al., Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii. Masshtab 1 : 1 000 000 (tret’e pokolenie). Seriya Noril’skaya. List R-45. Ob"yasnitel’naya zapiska (State Geological Map of the Russian Federation. Scale 1 : 1 000 000 (Third Generation). Norilsk Series. Sheet R-45. Explanatory Note), St. Petersburg: Kartograficheskaya fabrika VSEGEI, 2016.

  43. Pang, K-N., Arndt, N., Svensen, H., et al., A petrologic, geochemical and Sr-Nd isotopic study on contact metamorphism and degassing of Devonian evaporites in the Norilsk aureoles, Siberia, Contrib. Mineral. Petrol., 2013, vol. 165, pp. 683–704.

    Article  Google Scholar 

  44. Pin, C., Joannon, S., and Bosq, Ch., Le fevre B., Gauthier P.J. precise determination of Rb, Sr, Ba, and Pb in geological materials by isotope dilution and ICP-quadrupole mass spectrometry following separation of the analytes, J. Analyt. Atom. Spectrom., 2003, vol. 18, pp. 135–141.

    Article  Google Scholar 

  45. Putirka, K.D., Thermometers and barometers for volcanic systems, Rev. Mineral. Geochem., 2008, vol. 69, pp. 61–120.

    Article  Google Scholar 

  46. Rad’ko, V.A., Fatsii intruzivnogo i effuzivnogo magmatizma Noril’skogo raiona (Facies of the Intrusive and Effusive Magmatism of the Norilsk Region), St. Petersburg: Kartograficheskaya fabrika VSEGEI, 2016.

  47. Richard, P., Shimizu, N., and Allegre, C.J., 143Nd/144Nd a natural tracer: an application to oceanic basalts, Earth Planet. Sci. Lett., 1976, vol. 31. https://doi.org/10.1016/0012-821X(76)90219-3

  48. Ryabov, V.V., Shevko, A.Ya., and Gora, M.P., Magmaticheskie porody Noril’skogo raiona. T. 1. Petrologiya trappov (Magmatic Rocks of the Norilsk Region. Volume 1. Trap Petrology), Novosibirsk: Nonparel’, 2000.

  49. Ryabov, V.V., Shevko, A.Y., and Gora, M.P., Trap Magmatism and Ore Formation in the Siberian Noril’sk Region (Springer, 2014).

    Book  Google Scholar 

  50. Samsonov, A.V., Sluzhenikin, S.F., Larionova, Yu.O., et al., 870-Ma active margin in the northwestern corner of the Siberian Craton: data on xenoliths from Late Permian explosibe Maslovskaya diatreme, Norilsk region, Tektonika i geodinamika Zemnoi kory i mantii: fundamental’nye problemy. Materialy LIII Tektonicheskogo soveshchaniya (Tectonics and Geodynamics of the Earths’ Crust and Mantle: Fundamental Problems. Proc. 54th Tectonic Conference), Moscow: GEOS, 2022, vol. 2, pp. 168–172.

  51. Schoneveld, L., Barnes, S.J., Godel, B., et al., Oxide–sulfide–melt–bubble interactions in spinel-rich taxitic rocks of the Norilsk–talnakh intrusions, Polar Siberia, Econ. Geol., 2020, vol. 115, pp. 1305–1320.

    Article  Google Scholar 

  52. Sluzhenikin, S.F. and Krivolutskaya, N.A., Pyasino–Vologochan intrusion: geological structure and platinum–copper–nickel ores (Norilsk Region), Geol. Ore Deposits, 2015, vol. 57, no. 5, pp. 381–401.

    Article  Google Scholar 

  53. Sluzhenikin, S.F., Malitch, K.N., and Grigor’eva, A.V., “Differentiated mafic–ultramafic intrusions of the Kruglogorsky Type in the Noril’sk area: petrology and ore potential, Petrology, 2018, vol. 26, no. 3, pp. 280–313.

    Article  Google Scholar 

  54. Sluzhenikin, S.F., Malitch, K.N., Turovtsev, D.M., et al., Differentiated mafic–ultramafic intrusions of the Zubovsky Type in the Norilsk Area: petrochemistry, geochemistry, and ore potential, Petrology, 2020, vol. 28, no. 5, pp. 458–490.

    Article  Google Scholar 

  55. Sluzhenikin, S.F., Yudovskaya, M.A., Barnes, S.J., et al., Low-sulfide platinum group element ores of the norilsk-talnakh camp, Econ. Geol., 2020, vol. 115, pp. 1267–1303.

    Article  Google Scholar 

  56. Sobolev, A.V., Krivolutskaya, N.A., and Kuzmin, D.V., Petrology of the parental melts and mantle sources of Siberian trap magmatism, Petrology, 2009, vol. 17, no. 3, pp. 253–286.

    Article  Google Scholar 

  57. Sukhareva, M.S. and Kuznetsova, N.P., On question of relations of differentiated intrusions of the Talnakh ore cluster: evidence from northern flanks, Trappovyi magmatizm Sibirskoi platformy v svyazi s tektonikoi i poiskami poleznykh iskopaemykh. Tez. dokl. (Trap Magmagism of the Siberian Platform in Relation with Tectonics and Prospecting of Mineral Resources. Abstracts), Krasnoyarsk: Krasnoyarskgeologiya, 1983, pp. 89–92.

    Google Scholar 

  58. Turovtsev, D.M., Kontaktovyi metamorfizm noril’skikh intruzii (Contact Metamorphism of the Norilsk Intrusions), Moscow: Nauchnyi mir, 2002.

  59. Yao, Z. and Mungall, J.E., Linking the Siberian flood basalts and giant Ni–Cu–PGE sulfide deposits at Norilsk, J. Geophys. Res. Solid. Earth, 2021. https://doi.org/10.1029/2020JB020823

  60. Zemskova, G.V., Petrographic characteristics of the Lower Talnakh type intrusions (Norilsk region), Genezis i usloviya lokalizatsii medno-nikelevogo orudeneniya (Genesis and Conditions of Localization of the Copper–Nickel Mineralization), Moscow: TsNIGRI, 1981, pp. 28–34.

  61. Zen’ko, T.E. and Czamanske, G.K., Spatial and petrologic aspects of the intrusions of the Noril’sk–Talnakh ore junctions, Siberia, Ontario Geol. Surv. Spec., 1994, vol. 5, pp. 263–282.

    Google Scholar 

  62. Zolotukhin, V.V., Osnovnye zakonomernosti prototektoniki i voprosy formirovaniya rudonosnykh trappovykh intruzii (na primere Noril’skoi) (Main Tendencies of Prototectonics and Questions of Formation of Ore-Bearing Trap Intrusions with Reference to the Norilsk Intrusion), Moscow: Nauka, 1964.

Download references

ACKNOWLEDGMENTS

We are grateful for fruitful discussion to our colleagues from research and prospecting organizations, especially to geologists of the Norilskgeologii (NNTS Technical Services), whose efforts significantly clarified the geological structure of the Norilsk ore region. We are grateful to V.S. Kamenetsky and I.F. Chayka for critical comments and suggestions, which helped us to specify obtained data.

Funding

The studies were supported by the Russian Science Foundation (project no. 21–17–00119 https://rscf.ru/project/21–17–00119) with partial support of isotope studies by government-financed task no. 122022600107–1 of the Institute of Geology and Geochemistry of the Ural Branch of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. F. Sluzhenikin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Bogina

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sluzhenikin, S.F., Malitch, K.N., Yudovskaya, M.A. et al. Lower Talnakh Type Intrusions of the Norilsk Ore Region. Petrology 31, 492–518 (2023). https://doi.org/10.1134/S0869591123050065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591123050065

Keywords:

Navigation