Skip to main content
Log in

Neoproterozoic Volhynia-Brest magmatic province in the western East European craton: Within-plate magmatism in an ancient suture zone

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The reasons for the isotopic and geochemical heterogeneity of magmatism of the Neoproterozoic large Volhynia-Brest igneous province (VBP) are considered. The province was formed at 550 Ma in response to the break up of the Rodinia supercontinent and extends along the western margin of the East European craton, being discordant to the Paleoproterozoic mobile zone that separates Sarmatia and Fennoscandia and the Mesoproterozoic Volhynia-Orsha aulacogen. The basalts of VBP show prominent spatiotemporal geochemical zoning. Based on petrographic, mineralogical, geochemical, and isotopic data, the following types of basalts can be distinguished: olivine-normative subalkaline basalts consisting of low-Ti (sLT, < 1.10–2.0 wt % TiO2; εNd(550) from −6.6 to −2.7) and medium-Ti (sMT, 2.0–3.0 wt % TiO2, occasionally up to 3.6 wt % TiO2; εNd(550) from −3.55 to + 0.6) varieties; normal quartz-normative basalts (tholeiites) including low-Ti (tLT, < 1.75–2.0 wt % TiO2) and medium-to-high-Ti (tHT1, 2.0–3.6 wt % TiO2, εNd(550) from −1.3 to + 1.0) varieties. The hypabyssal bodies are made up of subalkaline low-Ti olivine dolerites (LT, 1.2–1.5 wt % TiO2; εNd(550) = −5.8) and subalkaline high-Ti olivine gabbrodolerites (HT2, 3.0–4.5 wt % TiO2; εNd(550) = −2.5). Felsic rocks of VBP are classed as volcanic rocks of normal (andesidacites, dacites, and rhyodacites) and subalkaline (trachyrhyodacites) series with TiO2 0.72–0.77 wt% and εNd(550) of −12. The central part of VBP is underlain by a Paleoproterozoic domain formed by continent-arc accretion and contains widespread sills of HT2 dolerites and lavas of LT basalts; the northern part of the province is underlain by the juvenile Paleoproterozoic crust dominated by MT and HT1 basalts. MT and LT basalts underwent significant AFC-style upper crustal contamination. During their long residence in the upper crustal magmatic chambers, the basaltic melts fractionated and caused notable heating of the wall rocks and, correspondingly, nonmodal melting of the upper crustal protolith containing high-Rb phase (biotite), thus producing the most felsic rocks of the province. The basalts of VBP were derived from geochemically different sources: probably, the lithosphere and a deep-seated plume (PREMA type). The HT2 dolerites were generated mainly from a lithospheric source: by 3–4% melting of the geochemically enriched garnet lherzolite mantle. LT dolerites were obtained by partial melting of the modally metasomatized mantle containing volatile-bearing phases. The concepts of VBP formation were summarized in the model of three-stage plume-lithosphere interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. V. Aksamentova and I. V. Naidenkov, 1: 1 000 000 Geological Map of the Crystalline Basement of Belarus and Adjacent Territories. Explanatory Notes (Kiev, 1991) [in Russian].

  2. A. A. Ariskin and G. S. Barmina, Modeling of Phase Equilibria during the Crystallization of the Basaltic Magmas (Nauka, Moscow, 2000) [in Russian].

    Google Scholar 

  3. N. T. Arndt, A. C. Kerr, and J. Tarney, “Dynamic Melting in Plume Heads: the Formation of Gorgona Komatiites and Basalts,” Earth Planet. Sci. Lett. 146, 289–301 (1997).

    Article  Google Scholar 

  4. D. Ayalew, P. Barbey, B. Marty, et al., “Source, Genesis, and Timing of Giant Ignimbrite Deposits Associated with Ethiopian Continental Flood Basalts,” Geochim. Cosmochim. Acta 66(8), 1429–1448 (2002).

    Article  Google Scholar 

  5. T. L. Barry, A. D. Saunders, P. D. Kempton, et al., “Petrogenesis of Cenozoic Basalts from Mongolia: Evidence for the Role of Asthenospheric versus Metasomatized Lithospheric Mantle Sources,” J. Petrol. 44(3), 55–91 (2003).

    Article  Google Scholar 

  6. A. Bialowska, N. Bakun-Czubarow, and I. Y. Fedoryshyn, “Neoproterozoic Flood Basalts of the Upper Beds of the Volhynian Series,” Geol. Quart. 46, 37–57 (2002).

    Google Scholar 

  7. E. V. Bibikova, S. V. Bogdanova, S. R. Claesson, et al., “Isotopic Age, Nature, and Structure of the Precambrian Crust in Belarus,” Stratigr. Geol. Korrelyatsiya 3(3), 68–78 (1995) [Straigr. Geol. Corr. 3, 591–601 (1995)].

    Google Scholar 

  8. S. V. Bogdanova, I. K. Pashkevich, R. Gorbatschev, and M. I. Orlyuk, “Riphean Rifting and Major Paleoproterozoic Boundaries in the East European Craton: Geology and Geophysics,” Tectonophysics 286, 1–22 (1996).

    Article  Google Scholar 

  9. S. Bogdanova, R. Gorbatschev, M. Grad, et al., “EURO-BRIDGE: New Insight into the Geodynamic Evolution of the East European Craton,” in European Lithosphere Dynamics, Ed. by D. G. Gee and R. A. Stephenson, Geol. Soc. London Mem., No. 2, 599–625 (2006).

  10. W. A. Bohrson and F. J. Spera, “Energy-Constrained Open-System Magmatic Processes II: Application of Energy-Constrained Assimilation-Fractional Crystallization (EC-AFC) Model To Magmatic Systems,” J. Petrol. 42, 1019–1041 (2001).

    Article  Google Scholar 

  11. E. Brizi, S. Nazzareni, F. Princivalle, and P. F. Zanazzi, “Clinopyroxenes from Mantle-Related Xenocrysts in Alkaline Basalts from Hannuoba (China): Augite-Pigeonite Exsolutions and Their Thermal Significance,” Contrib. Mineral. Petrol. 145(5), 578–584 (2003).

    Article  Google Scholar 

  12. D. Chandrasekharam, J. J. Mahoney, H. C. Sheth, and R. A. Duncan, “Elemental and Nd-Sr-Pb Isotope Geochemistry of Flows and Dikes from the Tapi Rift, Deccan Flood Basalt Province, India,” J. Volcanol. Geotherm. Res. 93, 111–123 (1999).

    Article  Google Scholar 

  13. S. Claesson, S. V. Bogdanova, E. V. Bibikova, and R. Gorbatschev, “Isotopic Evidence for Paleoproterozoic Accretion in the Basement of the East European Craton,” Tectonophysics 339, 1–18 (2001).

    Article  Google Scholar 

  14. W. Compston, M. S. Sambridge, R. F. J. Reinfrank, et al., “Numerical Ages of Volcanics and the Earliest Faunal Zone within the Late Precambrian of East Poland,” Geol. Soc. 152, 599–611 (1995).

    Article  Google Scholar 

  15. L. V. Danyushevsky, “The Effect of Small Amounts of H2O on Crystallization of Mid-Ocean Ridge and Backarc Basin Magmas,” J. Volcanol. Geotherm. Res. 110, 265–280 (2001).

    Article  Google Scholar 

  16. D. J. De Paolo, “Trace Element and Isotopic Effects of Combined Wallrock Assimilation and Fractional Crystallization,” Earth Planet. Sci. Lett. 53, 189–202 (1981).

    Article  Google Scholar 

  17. C. Dupuy, A. Michard, J. Dostal, et al., “Isotope and Trace-Element Geochemistry of Proterozoic Natkusiak Flood Basalts from the Northwestern Canadian Shield,” Chem. Geol. 120, 15–25 (1995).

    Article  Google Scholar 

  18. A. Ewart and W. L. Griffin, “Application of Proton-Microprobe Data to Trace-Element Partitioning in Volcanic Rocks,” Chem. Geol. 117(1–4), 251–284 (1994).

    Article  Google Scholar 

  19. F. Garland, S. Turner, and C. Hawkesworth, “Shifts in the Source of the Parana Basalts through Time,” Lithos 37, 223–243 (1996).

    Article  Google Scholar 

  20. Geology of Belarus, Ed. by A. S. Makhnach, R. G. Garetskii, A. V. Matveeva, et al. (IGN NAN Belarusi, Minsk, 2001) [in Russian].

    Google Scholar 

  21. R. M. George and N. W. Rogers, “Plume Dynamics beneath the African Plate Inferred from the Geochemistry of the Tertiary Basalts of Southern Ethiopia,” Contrib. Mineral. Petrol. 144, 286–304 (2002).

    Article  Google Scholar 

  22. S. J. Goldstein and S. B. Jacobsen, “Nd and Sr Isotopic Systematics of River Water Suspended Material: Implications for Crustal Evolution,” Earth Planet. Sci. Lett. 87, 249–265 (1988).

    Article  Google Scholar 

  23. M. Gregoire, D. R. Bell, and A.P. Le Roex, “Garnet Lherzolites from the Kaapvaal Craton (South Africa): Trace Element Evidence for a Metasomatic History,” J. Petrol. 44, 629–657 (2003).

    Article  Google Scholar 

  24. C. J. Hawkesworth, P. C. Lightfoot, V. A. Fedorenko, et al., “Magma Differentiation and Mineralization in the Siberian Continental Flood Basalts,” Lithos 34, 61–88 (1996).

    Article  Google Scholar 

  25. S. B. Jacobsen and G. J. Wasserburg, “Sm-Nd Isotopic Evolution of Chondrites and Achondrites, II,” Earth Planet. Sci. Lett. 67, 137–150 (1984).

    Article  Google Scholar 

  26. M. Juskowiakowa, “Bazalty Wschodniej Polski,” Biul. 245, 173–252 (1971).

    Google Scholar 

  27. E. V. Karpukhina, V. A. Pervov, and D. Z. Zhuravlev, “Petrology of the Subalkaline Volcanism in the Western Slope of the Ural Mountains—An Indicator of the Late Vendian Rifting,” Petrologiya 9(5), 480–503 (2001) [Petrology 9, 415–436 (2001)].

    Google Scholar 

  28. Catalogue of Chemical Analyses of the Platformal Dike and Volcanogenic Rocks of Ukraine, Ed. by I. B. Shcherbakov (Naukova Dumka, Kiev, 1988) [in Russian].

    Google Scholar 

  29. P. B. Keleman and J. T. Dunn, “Depletion of Nb Relative to Other Highly Incompatible Elements by Melt/Rock Reaction in the Upper Mantle,” Earth Planet. Sci. Lett. 73, 656–657 (1992).

    Google Scholar 

  30. V. A. Kononova, L. K. Levsky, V. A. Pervov, et al., “Pb-Sr-Nd Isotopic Systematics of Mantle Sources of Potassic Ultramafic and Mafic Rocks in the North of the East European Platform,” Petrologiya 10, 493–509 (2002) [Petrology 10, 433–447 (2002)].

    Google Scholar 

  31. M. Krabbendam and T. D. Barr, “Proterozoic Orogens and the Break-up of Gondwana: Why Did Some Orogens not Rift?” J. Afr. Earth Sci. 31, 36–49 (2000).

    Article  Google Scholar 

  32. E. Krzeminska, “The Outline of Geochemical Features of the Late Neoproterozoic Volcanic Activity in the Lublin-Podlasie Basin, Eastern Poland,” Polsk. Towarz. Mineral. Prace Spec. Mineral. Soc. Poland. Spec. Pap. Zeszyt 26, 47–51 (2005).

    Google Scholar 

  33. A. F. Kuz’myankova, “Structure and Detailed Petrographic Characteristics of the Vendian Volcanogenic Sequences of Adjacent Areas of Belarus and Ukraine,” Litasfera, No. 2, 54–59 (2005).

  34. G. A. MacDonald and T. Katsura, “Chemical Composition of Hawaiian Lavas,” J. Petrol. 5, 82–133 (1964).

    Google Scholar 

  35. A. S. Makhnach and N. V. Veretennikov, Volcanogenic Complexes of the Upper Proterozoic (Vendian) of Belarus (Nauka i Tekhnika, Minsk, 1970) [in Russian].

    Google Scholar 

  36. A. J. W. Markwick, H. Downes, and N. Veretennikov, “The Lower Crust of S.E. Belarus: Petrological, Geophysical and Geochemical Constraints from Xenoliths,” Tectonophysics 339, 215–237 (2001).

    Article  Google Scholar 

  37. J. S. Marsh, A. Ewart, S. C. Milner, et al., “The Etendeka Igneous Province: Magma Types and Their Stratigraphic Distribution with Implications for the Evolution of the Parana-Etendeka Flood Basalt Province,” Bull. Volcanol. 62, 464–486 (2001).

    Article  Google Scholar 

  38. D. McKenzie and R. K. O’ Nions, “Partial Melt Distributions from Inversion of Rare Earth Element Concentrations,” J. Petrol. 32, 1021–1091 (1991).

    Google Scholar 

  39. Copper of Volhynia (Znanie Ukrainy, Kiev, 2002), p. 130 [in Ukraine].

  40. J. G. Meert and T. H. Torsvik, “The Making and Unmaking of a Supercontinent: Rodinia Revisited,” Tectonophysics 375, 261–288 (2003).

    Article  Google Scholar 

  41. W. P. Nash and H. R. Crecraft, “Partition Coefficients for Trace Elements in Silicic Magmas,” Geochim. Cosmochim. Acta 49, 309–322 (1985).

    Article  Google Scholar 

  42. S. Nazzareni, G. Molin, A. Peccerillo, and P. F. Zanazzi, “Volcanological Implications of Crystal-Chemical Variations in Clinopyroxenes from the Aeolian Arc, Southern Tyrrhenian Sea (Italy),” Bull. Volcanol. 63, 73–82 (2001).

    Article  Google Scholar 

  43. A. M. Nikishin, P. A. Ziegler, R. A. Stephenson, et al., “Late Precambrian to Triassic History of the Eastern European Craton: Dynamics of Sedimentary Basin Evolution,” Tectonophysics 268, 23–63 (1996).

    Article  Google Scholar 

  44. P. Nimis and P. Ulmer, “Clinopyroxene Geobarometry of Magmatic Rocks. Part 1. An Expanded Structural Geobarometer for Anhydrous and Hydrous, Basic and Ultrabasic Systems,” Contrib. Mineral. Petrol. 133, 122–135 (1998).

    Article  Google Scholar 

  45. P. A. Nimis, “Clinopyroxene Geobarometer for Basaltic Systems Based on Crystal-Structure Modeling,” Contrib. Mineral. Petrol. 121, 115–125 (1995).

    Article  Google Scholar 

  46. P. Nimis, “Clinopyroxene Geobarometry of Magmatic Rocks. Part 2. Structural Geobarometers for Basic to Acid, Tholeiitic and Mildly Alkaline Magmatic Systems,” Contrib. Mineral. Petrol. 135(1), 62–74 (1999).

    Article  Google Scholar 

  47. A. A. Nosova and N. V. Veretennikov, “Southwestern Margin of the Baltic in the Neoproterzoic: Isotope-Geochemical Features of the Basalts of the Volhynia Trap Province in Relation with a Late Stage of Break-Up of the Rodinia Supercontinent,” in Proceedings of 38th Tectonic Conference on Tectonics of the Earth’s Crust and Mantle (Moscow, 2005), pp. 165–169 [in Russian].

  48. A. A. Nosova, N. V. Veretennikov, and L. K. Levskii, “Nature of the Mantle Source and Specific Features of Crustal Contamination of Neoproterozoic Flood Basalts of the Volhynia Province (Nd-Sr Isotopic and ICP-MS Geochemical Data),” Dokl. Akad. Nauk 401, 429–433 (2005) [Dokl. Earth Sci. 401, 429–433 (2005)].

    Google Scholar 

  49. A. A. Nosova, Yu. O. Larionova, A. V. Samsonov, et al., “Isotopic Constraints on the Age of the Solozero Basalts (Kandalaksha-Dvina Rift): New Data on the Neoproterozoic Within-Plate Magmatism of the East European Platform,” in Proceedings of the 3rd Russian Conference on Isotopic Dating of the Processes of the Ore Formation, Magmatism, Sedimentation, and Metamorphism (Moscow, 2006), Vol. 2, pp. 81–85 [in Russian].

    Google Scholar 

  50. D. W. Peate and C. J. Hawkesworth, “Lithospheric to Asthenospheric Transition in Low-Ti Flood Basalts from Southern Parana, Brazil,” Chem. Geol. 127, 1–24 (1996).

    Article  Google Scholar 

  51. E. M. Piccirillo, E. Justin-Visentin, B. Zanettin, et al., “Geodynamic Evolution from Plateau to Rift: Major and Trace Element Geochemistry of the Central Eastern Ethiopian Plateau Volcanics,” Neues Jahrb. Geol. Palaeontol. Abt. 158, 139–179 (1979).

    Google Scholar 

  52. R. Pik, C. Deniel, C. Coulon, et al., “Isotopic and Trace Element Signatures of Ethiopian Flood Basalts: Evidence for Plume-Lithosphere Interactions,” Geochim. Cosmochim. Acta 63, 2263–2279 (1999).

    Article  Google Scholar 

  53. V. L. Prikhod’ko, Ya. A. Kosovskii, and I. N. Ivaniv, “Prospects of Copper Potential of the Volcanogenic Rocks of the Volhynia Group of the Lukov-Ratnov Horst Zone,” Geol. Zh., No. 4, 138–143 (1993).

  54. J. H. Puffer, “A Late Neoproterozoic Eastern Laurentian Superplume: Location, Size, Chemical Composition, and Environmental Impact,” Amer. J. Science 302, 1–27 (2002).

    Article  Google Scholar 

  55. H. R. Rollinson, Using Geochemical Data: Evaluation, Presentation, Interpretation (Longman, London, 1995).

    Google Scholar 

  56. R. L. Rudnick and S. Gao, “Composition of the Continental Crust,” in Treatise on Geochemistry, Ed. by H. D. Holland and K. K. Turekian (Elsevier, Amsterdam, 2004), Vol. 3, pp. 1–64.

    Google Scholar 

  57. L. V. Shumlyanskii, “On Problems of Validity of the Rb-Sr Isotopic Age of the Mineralization of the Volhynia Trap Province,” in Proceedings of the 3rd Russian Conference on Isotopic Dating of the Processes of the Ore Formation, Magmatism, Sedimentation, and Metamorphism, Moscow, Russia, 2006 (Moscow, 2006), Vol. 2, pp. 421–425 [in Russian].

  58. L. V. Shumlyanskii, A. N. Ponomarenko, P.-G. Andreason, and E. I. Derevskaya, “Formation Age of the Basalts of Volhynia Trap Province: Preliminary Study of Zircons by Ion-Ion Microprobe,” in Proceedings of the 3rd Russian Conference on Isotopic Dating of the Processes of the Ore Formation, Magmatism, Sedimentation, and Metamorphism, Moscow, Russia, 2006 (Moscow, 2006), Vol. 2, pp. 426–430 [in Russian].

  59. L. Shumlyanskyy, R. Ellam, and K. Derevska, “First Rb-Sr and Sm-Nd Isotope Data on Vendian Continental Flood Basalts of the Western Part of the East-European Craton,” Metallogeny of Precambrian Shields 75, 114–127 (2002).

    Google Scholar 

  60. L. Shumlyanskyy, R. M. Ellam, and O. Mitrokhin, “The Origin of Basic Rocks of the Korosten AMCG Complex, Ukrainian Shield: Implication of Nd and Sr Isotope Data,” Lithos 90, 214–222 (2006).

    Article  Google Scholar 

  61. F. J. Spera and W. A. Bohrson, “Energy-Constrained Open-System Magmatic Processes I: General Model and Energy-Constrained Assimilation-Fractional Crystallization (EC-AFC) Formulation,” J. Petrol. 42(5), 999–1018 (2001).

    Article  Google Scholar 

  62. S. S. Sun and W. F. McDonough, “Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes,” in Magmatism in the Ocean Basins, Ed. by A. D. Saunders and M. J. Norry, Geol. Soc. 42, 313–345 (1989).

  63. L. Tack, M. T. D. Wingate, J.-P. Lie’geois, et al., “Early Neoproterozoic Magmatism (1000–910 Ma) of the Zadinian and Mayumbian Groups (Bas-Congo): Onset of Rodinia Rifting at the Western Edge of the Congo Craton,” Precambrian Res. 110, 277–306 (2001).

    Article  Google Scholar 

  64. R. N. Thomson, “British Tertiary Volcanic Province,” Scott. J. Geol. 18, 49–107 (1982).

    Article  Google Scholar 

  65. S. P. Turner, L. A. Kirstein, C. J. Hawkesworth, et al., “Petrogenesis of an 800 m Lava Sequence in Eastern Uruguay: Insights into Magma Chamber Processes Beneath the Parana Flood Basalt Province,” J. Geodynamics 28, 471–478 (1999).

    Article  Google Scholar 

  66. Z. G. Ushakova, Basic and Ultrabasic Magmatic Formations of Platforms and Mobile Belts (VSEGEI, Leningrad, 1962) [in Russian].

    Google Scholar 

  67. R. T. Van Balen and M. Heeremans, “Middle Proterozoic-Early Palaeozoic Evolution of Central Baltoscandian Intracratonic Basins: Evidence for Asthenospheric Diapirs,” Tectonophysics 300, 131–142 (1998).

    Article  Google Scholar 

  68. B. T. Volovnik and B. I. Vlasov, Geology, Petrology, and Metallogeny of Crystalline Rocks at the East European Platform (Nedra, Moscow, 1976), Vol. 2, pp. 132–136 [in Russian].

    Google Scholar 

  69. B. Ya. Volovnik, Extended Abstracts of Candidate’s Dissertation on Geology and Mineralogy (Lvov, 1971) [in Russian].

  70. Y. Xu, S.-L. Chung, B. Jahn, and G. Wu, “Petrologic and Geochemical Constraints on the Petrogenesis of Permian-Triassic Emeishan Flood Basalts in Southwestern China,” Lithos 58, 145–168 (2001).

    Article  Google Scholar 

  71. G. V. Zinovenko, “Main Trends in the Distribution of Volcanosedimentary Sequences on the Territory of the Podlyassk-Brest Depression,” Izv. Akad. Nauk SSSR, Ser. Geol., No. 3, 61–66 (1976).

  72. T. A. Znamenskaya, L. V. Korneichuk, and V. L. Prikhod’ko, “Paleotectonic Setting of the Formation of the Volhynia Group of Volhynia-Podolia,” Geol. Zh., No. 3, 133–141 (1990).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Nosova.

Additional information

Original Russian Text © A.A. Nosova, O.F. Kuz’menkova, N.V. Veretennikov, L.G. Petrova, L.K. Levsky, 2008, published in Petrologiya, 2008, Vol. 16, No. 2, pp. 115–147.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nosova, A.A., Kuz’menkova, O.F., Veretennikov, N.V. et al. Neoproterozoic Volhynia-Brest magmatic province in the western East European craton: Within-plate magmatism in an ancient suture zone. Petrology 16, 105–135 (2008). https://doi.org/10.1134/S086959110802001X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S086959110802001X

Keywords

Navigation