Skip to main content
Log in

Virtual Reality as an upper Limb Rehabilitation Approach

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

Cerebrovascular diseases seriously reduce the quality of life of patients. One of the priority tasks of restoring individual independency, daily living and social activity of patients is to restore basic motor skills such as the reaching, manipulating, and bimanual tasks an coordination. For successful recovery of movement necessary to conduct training in real environment, active participation of the patient, and interactive biofeedback that allows the patient to control the correct performance of motor tasks and adjust their own efforts. Evolution of computer technology gives an opportunity to improve the classical approaches in stroke rehabilitation. To make rehabilitation process met necessary terms, in everyday practice often used high technological devices, such as virtual reality (VR) systems. The technical basis of VR is an artificial three-dimensional environment that is created with computer and displayed on the screen. These technologies allow recreating the necessary training environment for motor skills relearning, as well as to provide interactive biofeedback and make rehabilitation process more intensive. This review present an information about history of VR technology developments, experience of upper limb rehabilitation using VR systems and comparative analysis of different VR based rehabilitation approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Klochkov, A.S. and Chernikova, L.A., Robotic and mechanotherauptic devices for restoring the function of the hand after a stroke, Russ. Med. Zh., 2014, vol. 22, no. 22, pp. 1589–1592.

    Google Scholar 

  2. Mokienko, O.A., Lyukmanov, R.Kh., Chernikova, L.A., Suponeva, N.A., Piradov, M.A., and Frolov, A.A., Brain–computer interface: The first experience of clinical use in Russia, Hum. Physiol., 2016, vol. 42, no. 1, pp. 24–31.

    Article  Google Scholar 

  3. Stolyarova, G.R. and Tkacheva, L.G., Reabilitatsiya bol’nykh s postinsul’tnymi dvigatel’nymi rasstroistvami (Rehabilitation of Patients with Post-Stroke Motor Disorders), Moscow: Meditsina, 1978, vol. 57.

    Google Scholar 

  4. Suslina, Z.A., Illarioshkin, S.N., and Piradov, M.A., Neurology and neuroscience: development forecast, Ann. Klin. Eksp. Nevrol., 2007, vol. 1, no. 1, pp. 5–9.

    Google Scholar 

  5. Umarova, R.M., Chernikova, L.A., Tanashyan, M.M., et al., Neuromuscular electrostimulation in acute ischemic stroke, Vopr. Kurortol., Fizioter. Lech. Fiz. Kul’t., 2005, vol. 4, pp. 6–8.

    Google Scholar 

  6. Ustinova, K.I. and Chernikova, L.A., Virtual reality in neurorehabilitation, Ann. Klin. Eksp. Nevrol., 2008, vol. 2, no. 4, pp. 34–39.

    Google Scholar 

  7. Chernikova, L.A., The robotic systems in neurorehabilitation, Ann. Klin. Eksp. Nevrol., 2009, vol. 3, no. 3, pp. 30–36.

    Google Scholar 

  8. Chernikova, L.A., Ioffe, M.E., Prokopenko, R.A., et al., The use of the virtual reality technology for the restoration of movements of the paretic hand after stroke, Fizioter., Bal’neol., Reabil., 2011, no. 3, pp. 3–7.

    Google Scholar 

  9. Chernikova, L.A., Piradov, M.A., Suponeva, N.A., et al., High-tech methods of neurorehabilitation in diseases of the nervous system, in Nevrologiya XXI veka: diagnosticheskie, lechebnye i issledovatel’skie tekhnologii. Rukovodstvo dlya vrachei (Neurology of the 21st Century: Diagnostics, Therapeutic, and Research Methods: Manual for Physicians), Piradov, M.A., Illarioshkin, S.N., and Tanashyan, M.M., Eds., Moscow: Atmo, 2015, pp. 274–331.

    Google Scholar 

  10. Adamovich, S.V., Fluet, G.G., Mathai, A., et al., Design of a complex VR simulation to train finger motion for persons with hemiparesis: a proof of concept study, J. Neuroeng. Rehabil., 2009, vol. 17, no. 6, p. 28. PMID 19615045. doi 10.1186/1743-0003-6-28

    Article  Google Scholar 

  11. Adams, R.J., Lichter, M.D., Krepkovich, E.T., et al., Assessing upper extremity motor function in practice of virtual activities of daily living, IEEE Trans. Neural Syst. Rehabil. Eng., 2015, vol. 23, no. 2, pp. 287–296. PMID 25265612. doi 10.1109/TNSRE.2014.2360149

    Article  PubMed  Google Scholar 

  12. Bao, X., Mao, Y., Lin, Q., et al., Mechanism of Kinectbased virtual reality training for motor functional recovery of upper limbs after subacute stroke, Neural Regener. Res., 2013, vol. 8, no. 31, pp. 2904–2913. PMID 25206611. doi 10.3969/j.issn.1673-5374. 2013.31.003

    Google Scholar 

  13. Beebe, J.A. and Lang, C.E., Active range of motion predicts upper extremity function 3 months after stroke, Stroke, 2009, vol. 40, no. 5, pp. 1772–1779. PMID 19265051. doi 10.1161/STROKEAHA.108.536763

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bonnechère, B., Jansen, B., Salvia, P., et al., Validity and reliability of the Kinect within functional assessment activities: comparison with standard stereophotogrammetry, Gait Posture, 2014, vol. 39, no. 1, pp. 593–598. PMID 24269523. doi 10.1016/j.gaitpost. 2013.09.018

    Article  PubMed  Google Scholar 

  15. Bourbonnais, D., Vanden Noven, S., Carey, K.M., and Rymer, W.Z., Abnormal spatial patterns of elbow muscle activation in hemiparetic human subjects, Brain, 1989, vol. 112, no. 1, pp. 85–102. PMID 2917281.

    Article  PubMed  Google Scholar 

  16. Bourbonnais, D., Vanden Noven, S., and Pelletier, R., Incoordination in patients with hemiparesis, Can. J. Public Health, 1992, vol. 83, no. 2, pp. 58–63. PMID 1468052

    Google Scholar 

  17. Cameirão, M.S., Badia, S.B., Duarte, E., et al., The combined impact of virtual reality neurorehabilitation and its interfaces on upper extremity functional recovery in patients with chronic stroke, Stroke, 2012, vol. 43, no. 10, pp. 2720–2728. PMID 22871683. doi 10.1161/STROKEAHA.112.653196

    Article  PubMed  Google Scholar 

  18. Cameirão, M.S., Badia, S.B., Oller, E.D., et al., Neurorehabilitation using the virtual reality based Rehabilitation Gaming System: methodology, design, psychometrics, usability and validation, J. Neuroeng. Rehabil., 2010, vol. 22, no. 7, p. 48. PMID 20860808. doi 10.1186/1743-0003-7-48

    Article  Google Scholar 

  19. Carr, J.H. and Shepherd, R.B., Motor Relearning Program for Stroke, Rockville: Aspen, 1983.

    Google Scholar 

  20. Chirivella, P., del Barco, M., et al., NeuroAtHome: A software platform of clinical videogames specifically designed for the cognitive rehabilitation of stroke patients, Brain Inj., 2014, vol. 28, nos. 5–6, pp. 517–878.

    Google Scholar 

  21. Cirstea, M.C. and Levin, M.F., Compensatory strategies for reaching in stroke, Brain, 2000, vol. 123, no. 5, pp. 940–953. PMID 10775539.

    Article  PubMed  Google Scholar 

  22. Cruz-Neira, C., Sandin, D., DeFanti, T., et al., The CAVE: audiovisual experience automatic virtual environment, Commun. ACM, 1992, vol. 35, no. 6, pp. 64–72. doi 10.1145/129888.129892

    Article  Google Scholar 

  23. Dhurjaty, S., The economics of telerehabilitation, Telemed. J. E-Health, 2004, vol. 10, no. 2, pp. 196–199. PMID 15319049. doi 10.1089/tmj.2004.10.196

    Article  PubMed  Google Scholar 

  24. Gagliardo, P., Ferreiro, G., Izquierdo, A., et al., NeuroAtHome: A software platform of clinical videogames specifically designed for the motor rehabilitation of stroke patients, Brain Inj., 2014, vol. 28, nos. 5–6, pp. 517–878.

    Google Scholar 

  25. Galvin, J. and Levac, D., Facilitating clinical decisionmaking about the use of VR within pediatric motor rehabilitation: describing and classifying VR systems, Dev. Neurorehabil., 2011, vol. 14, no. 2, pp. 112–122.

    Article  PubMed  Google Scholar 

  26. Grimes, G., US Patent 4 414 537, 1983.

    Google Scholar 

  27. Hailey, D., Roine, R., Ohinmaa, A., et al., Evidence of benefit from telerehabilitation in routine care: a systematic review, J. Telemed. Telecare, 2011, vol. 17, no. 6, pp. 281–287. PMID 21844172. doi 10.1258/jtt. 2011.101208

    Article  PubMed  Google Scholar 

  28. Iosa, M., Morone, G., Fusco, A., et al., Leap motion controlled videogame-based therapy for rehabilitation of elderly patients with subacute stroke: a feasibility pilot study, Top. Stroke Rehabil., 2015, vol. 22, no. 4, pp. 306–316. PMID 26258456. doi 10.1179/1074935714Z.0000000036

    Article  PubMed  Google Scholar 

  29. Jack, D., Boian, R., Merians, A.S., et al., Virtual reality-enhanced stroke rehabilitation, Trans. Neural Syst. Rehabil. Eng., 2001, vol. 9, no. 3, pp. 308–318. PMID 11561668. doi 10.1109/7333.948460

    Article  CAS  Google Scholar 

  30. Jonassen, D., Handbook of Research for Educational Communications and Technology: A Project of the Association for Educational Communications and Technology, London: Routledge, 2004, pp. 461–498.

    Google Scholar 

  31. Kiper, P., Agostini, M., Luque-Moreno, C., et al., Reinforced feedback in virtual environment for rehabilitation of upper extremity dysfunction after stroke: preliminary data from a randomized controlled trial, Biomed. Res. Int., 2014, vol. 2014, p. 752128. PMID 24745024. doi 10.1155/2014/752128

    Article  PubMed  PubMed Central  Google Scholar 

  32. Krijn, M., Emmelkamp, P.M., Olafsson, R.P., et al., virtual reality exposure therapy of anxiety disorders: a review, Clin. Psychol. Rev., 2004, vol. 24, no. 3, pp. 259–281. PMID 15245832. doi 10.1016/j.cpr. 2004.04.001

    Article  CAS  PubMed  Google Scholar 

  33. Lamson, R., Virtual reality in psychotherapy virtual therapy of anxiety disorders, CyberEdge J., 1994, no. 4, pp. 1–28.

    Google Scholar 

  34. Lanier, J., Minsky, M., Fisher, S., et al., Virtual environments and interactivity: windows to the future, Proc. 16th Annual ACM Conf. on Computer Graphics and Interactive Techniques, SIGGRAPH 89, Boston, MA, New York: ACM, 1989.

    Google Scholar 

  35. Laver, K., George, S., Thomas, S., et al., Virtual reality for stroke rehabilitation: an abridged version of a Cochrane review, Eur. J. Phys. Rehabil. Med., 2015, vol. 51, no. 4, pp. 497–506. PMID 26158918.

    CAS  PubMed  Google Scholar 

  36. Lewis, G.N. and Rosie, J.A., Virtual reality games for movement rehabilitation in neurological conditions: how do we meet the needs and expectations of the users? Disability Rehabil., 2012, vol. 34, no. 22, pp. 1880–1886. PMID 22480353. doi 10.3109/09638288.2012.670036

    Article  Google Scholar 

  37. Lippman, A., Movie maps: An application of the optical videodisc to computer graphics, Proc. SIGGRAPH’ 80 Conf., July 14–18, 1980, Seattle, New York: ACM, 1980, pp. 32–43.

    Google Scholar 

  38. Merians, A.S., Fluet, G.G., Qiu, Q., et al., Robotically facilitated virtual rehabilitation of arm transport integrated with finger movement in persons with hemiparesis, J. Neuroeng. Rehabil., 2011, vol. 16, no. 8, p. 27. PMID 21575185. doi 10.1186/1743-0003-8-27

    Article  Google Scholar 

  39. Pietrzak, E., Cotea, C., and Pullman, S., Using commercial video games for upper limb stroke rehabilitation: is this the way of the future? Top. Stroke Rehabil., 2014, vol. 21, no. 2, pp. 152–162. PMID 24710975. doi 10.1310/tsr2102-152

    Article  PubMed  Google Scholar 

  40. Saposnik, G., Teasell, R., Mamdani, M., et al., Effectiveness of virtual reality using Wii gaming technology in stroke rehabilitation: a pilot randomized clinical trial and proof of principle, Stroke, 2010, vol. 41, no. 7, pp. 1477–1484. PMID 20508185. doi 10.1161/STROKEAHA.110.584979

    Article  PubMed  PubMed Central  Google Scholar 

  41. Simpson, L.A. and Eng, J.J., Functional recovery following stroke: capturing changes in upper-extremity function, Neurorehabil. Neural Repair., 2013, vol. 27, no. 3, pp. 240–250. PMID 23077144. doi 10.1177/1545968312461719

    Article  PubMed  Google Scholar 

  42. Trombly, C.A., Thayer-Nason, L., Bliss, G., et al., The effectiveness of therapy in improving finger extension in stroke patients, Am. J. Occup. Ther., 1986, vol. 40, no. 9, pp. 612–617. PMID 3766683. doi 10.5014/ajot.40.9.612

    Article  CAS  PubMed  Google Scholar 

  43. Truelsen, T., Piechowski-Jozwiak, B., Bonita, R., et al., Stroke incidence and prevalence in Europe: a review of available data, Eur. J. Neurol., 2006, vol. 13, pp. 81–198. PMID 16796582. doi 10.1111/j.1468-1331.2006.01138.x

    Article  Google Scholar 

  44. Viau, A., Feldman, A.G., McFadyen, B.J., et al., Reaching in reality and virtual reality: a comparison of movement kinematics in healthy subjects and in adults with hemiparesis, J. Neuroeng. Rehabil., 2004, vol. 14, no. 1, p. 11. PMID 15679937. doi 10.1186/1743-0003-1-11

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Klochkov.

Additional information

Original Russian Text © A.E. Khizhnikova, A.S. Klochkov, A.M. Kotov-Smolenskiy, N.A. Suponeva, L.A. Chernikova, 2016, published in Annaly Klinicheskoi i Eksperimental’noi Nevrologii, 2016, Vol. 10, No. 3, pp. 5–12.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khizhnikova, A.E., Klochkov, A.S., Kotov-Smolenskiy, A.M. et al. Virtual Reality as an upper Limb Rehabilitation Approach. Hum Physiol 43, 855–862 (2017). https://doi.org/10.1134/S0362119717080035

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119717080035

Keywords

Navigation