Skip to main content
Log in

Problems in the Development of Efficient Biotechnology for the Synthesis of Valuable Components from Microalgae Biomass

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

In recent decades, active research has been under way to find alternative sources of renewable raw materials for the production of valuable components. Microalgae, characterized by flexible metabolism, have great potential for organization of production of useful substances for various applications: pharmaceuticals, production of food additives, feed additives for animals and fish, materials, biofertilizers, and biofuels. Despite the large number of scientific publications dealing with separate stages of processes for the production of useful substances from microalgae, a systematic analysis of trends in the development of this sector of bioeconomics remains an important problem. The review presents an analysis of key stages in the production of useful substances from microalgae and the peculiarities of their implementation. Some problems concerning the improvement of performance of such productions using computer modeling tools were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Brundtland, G., Report of the World Commission on Environment and Development: Our Common Future. United Nations General Assembly document A/42/427, New York, UN, 1997.

  2. Bekirogullari, M., Figueroa-Torres, G.M., Pittman, J.K., and Theodoropoulos, C., Models of microalgal cultivation for added-value products: A review, Biotechnol. Adv., 2020, vol. 44, Article 107609.

    Article  CAS  PubMed  Google Scholar 

  3. Microalgae Biotechnology for Food, Health, and High Value Products. Alam, M.A., Xu, J.-L., and Wang, Z., Eds., Singapore: Springer Nature Singapore, 2020.

  4. Chisti, Y., Constraints to commercialization of algal fuels, J. Biotechnol., 2013, vol. 167, p. 201.

    Article  CAS  PubMed  Google Scholar 

  5. Tsoglin, L.N. and Pronina, N.A., Microalgae Biotechnology, Moscow: Nauchnyi mir, 2012.

  6. Bwapwa, J.K., Mutanda, T., and Anandraj, A.A., Sustainable Approach for Bioenergy and Biofuel Production from Microalgae, Abingdon-on-Thames, UK: CRC Press, Taylor & Francis Group, 2019.

  7. Benemann, J.R., Hydrogen production by microalgae, J. Appl. Phycol., 2000, vol. 12, p. 291.

    Article  CAS  Google Scholar 

  8. Liu, G., Liao, Y., Wu, Y., and Ma, X., Synthesis gas production from microalgae gasification in the presence of Fe2O3 oxygen carrier and CaO additive, Appl. Energy, 2018, vol. 212, p. 955.

    Article  CAS  Google Scholar 

  9. Gifuni, I., Pollio, A., Safi, C., Marzocchella, A., and Olivieri, G., Current bottlenecks and challenges of the microalgal biorefinery, Trends Biotechnol., 2019, vol. 37, p. 242.

    Article  CAS  PubMed  Google Scholar 

  10. Sinetova, M.A., Sidorov, R.A., Starikov, A.Y., Voronkov, A.S., Medvedeva, A.S., Krivova, Z.V., Pakholkova, M.S., Bachin, D., Bedbenov, V.S., Gabrielyan, D., Zayadan, B.K., Bolatkhan, K., and Los, D.A., Assessment of the biotechnological potential of cyanobacterial and microalgal strains from IPPAS culture collection, Appl. Biochem. Microbiol., 2020, vol. 56, no. 7, p. 794.

    Article  CAS  Google Scholar 

  11. Scopus. https://www.scopus.com/. Accessed May 24, 2021.

  12. Teng, S.Y., Yew, G.Y., Sukačová, K., Show, P.L., Máša, V., and Chang, J., Microalgae with artificial intelligence: A digitalized perspective on genetics, systems and products, Biotechnol. Adv., 2020, vol. 44, Article 107631.

    Article  CAS  PubMed  Google Scholar 

  13. Sathasivam, R., Radhakrishnan, R., Hashem, A., Elsayed, F., and Allah, E.F., Microalgae metabolites: A rich source for food and medicine, Saudi J. Biol. Sci., 2019, vol. 26, p. 709.

    Article  CAS  PubMed  Google Scholar 

  14. Dineshkumar, R., Ahamed Rasheeq, A., Arumugam, A., Nathiga Nambi, K.S., and Sampathkumar, P., Microalgae as bio-fertilizers for rice growth and seed yield productivity, Waste Biomass Valorization, 2018, vol. 9, no. 5, p. 793.

    Article  CAS  Google Scholar 

  15. Oliver, L., Dietrich, T., Marañón, I., Villarán, M.C., and Barrio, R.J., Producing omega-3 polyunsaturated fatty acids: A review of sustainable sources and future trends for the EPA and DHA market, Resources, 2020, vol. 9, p. 148.

    Article  Google Scholar 

  16. Algal Green Chemistry—Recent Progress in Biotechnology, Rastogi, R.P., Datta, M., and Pandey, A., Eds., Amsterdam: Elsevier, 2017.

    Google Scholar 

  17. Beta-Carotene Market—Global Industry Analysis, Size, Share, Growth, Trends, and Forecast 2019–2027.

  18. Señoráns, M., Casteján, N., and Señoráns, F.J., Advanced extraction of lipids with DHA from Isochrysis galbana with enzymatic pre-treatment combined with pressurized liquids and ultrasound assisted extractions, Molecules, 2020, vol. 25, no. 14, p. 3310.

    Article  PubMed Central  Google Scholar 

  19. Bwapwa, J.K., Anandraj, A., and Trois, C., Possibilities for conversion of microalgae oil into aviation fuel: A review, Renewable and Sustainable Energy Rev., 2017, vol. 80, p. 1345.

    Article  Google Scholar 

  20. Yoon, B.K., Jackman, J.A., Valle-Gonzalez, E.R., and Cho, N.-J., Antibacterial free fatty acids and monoglycerides: Biological activities, experimental testing, and therapeutic applications, Int. J. Mol. Sci., 2018, vol. 19, no. 1114.

  21. McWilliams, A., The global market for carotenoids. FOD025F. 2018. BCC Research Report Overview, Wellesley, MA: BCC, 2018.

  22. Cinar, S.O., Chong, Z.K., Kucuker, M.A., Wieczorek, N., Cengiz, U., and Kuchta, K., Bioplastic production from microalgae: A review, Int. J. Environ. Res. Public Health, 2020, vol. 17.

  23. Dixon, C. and Wilken, L.R., Green microalgae biomolecule separations and recovery, Bioresour. Bioprocess, 2018, vol. 5, no. 14.

  24. Gunes, S., Tamburaci, S., Dalay, M.C., and Gurhanb, I.D., In vitro evaluation of Spirulina platensis extract incorporated skin cream with its wound healing and antioxidant activities, Pharm. Biol., 2017, vol. 55, p. 1824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ronga, D., Biazzi, E., Parati, K., Carminati, D., Carminati, E., and Tava, A., Microalgal biostimulants and biofertilisers in crop productions, Agronomy, 2019, vol. 9, p. 192.

    Article  CAS  Google Scholar 

  26. Pierre, G., Delattre, C., Dubessay, P., Jubeau, S., Vialleix, C., Probert, I., and Michaud, P., What is in store for EPS microalgae in the next decade? Molecules, 2019, vol. 24, p. 4296.

    Article  CAS  PubMed Central  Google Scholar 

  27. Stanic-Vucinic, D., Minic, S., Nikolic, M.R., and Velickovic, T.C., Spirulina phycobiliproteins as food components and complements, Microalgal Biotechnol., 2018.

    Book  Google Scholar 

  28. Soares, A.T., Marques Júnior, J.G., Lopes, R.G., Derner, R.B., and Antoniosi Filho, N.R., Improvement of the extraction process for high commercial value pigments from Desmodesmus sp. microalgae, J. Braz. Chem. Soc., 2016, vol. 27, p. 1083.

    CAS  Google Scholar 

  29. Ambati, R.R., Gogisetty, D., Aswathanarayana, R.G., Ravi, S., Bikkina, P.N., Bo, L., and Yuepeng, S., Industrial potential of carotenoid pigments from microalgae: Current trends and future prospects, Crit. Rev. Food Sci. Nutr., 2019, vol. 59, no. 12, p. 1880.

    Article  CAS  PubMed  Google Scholar 

  30. de Jesús Paniagua-Michel, J., Morales-Guerrero, E., and Soto, J.O., Microalgal Biotechnology: Biofuels and Bioproducts, Berlin: Springer, 2015.

    Google Scholar 

  31. Ryckebosch, E., Bruneel, C., Termote-Verhalle, R., Goiris, K., Muylaert, K., and Foubert, I., Nutritional evaluation of microalgae oils rich in omega-3 long chain polyunsaturated fatty acids as an alternative for fish oil, Food Chem., 2014, vol. 160, p. 393.

    Article  CAS  PubMed  Google Scholar 

  32. Hamilton, M.L., Warwick, J., Terry, A., Allen, M.J., Napier, J.A., and Sayanova, O., Towards the industrial production of omega-3 long chain polyunsaturated fatty acids from a genetically modified diatom Phaeodactylum tricornutum, PLoS One, 2015, vol. 14.

  33. Lee Chang, K.J., Nichols, C.M., Blackburn, S.I., Dunstan, G.A., Koutoulis, A., and Nichols, P.D., Comparison of thraustochytrids Aurantiochytrium sp., Schizochytrium sp., Thraustochytrium sp., and Ulkenia sp. for production of biodiesel, long-chain omega-3 oils, and exopolysaccharide, Mar. Biotechnol., 2014, vol. 16, p. 396.

    Article  CAS  Google Scholar 

  34. Paz, A., Karnaouri, A., Templis, C.C., Papayannakos, N., and Topakas, E., Valorization of exhausted olive pomace for the production of omega-3 fatty acids by Crypthecodinium cohnii, Waste Manag., 2020, vol. 118, p. 435.

    Article  CAS  PubMed  Google Scholar 

  35. Berman, J., Zorrilla-López, U., Farré, G., Zhu, C., Sandmann, G., Twyman, R., Capell, T., and Christou, P., Nutritionally important carotenoids as consumer products, Phytochem. Rev., 2014, vol. 14, p. 727.

    Article  Google Scholar 

  36. El-Mekkawi, S.A., Hussein, H.S., Abo El-Enin, S.A., and El-Ibiari, N.N., Assessment of stress conditions for carotenoids accumulation in Chlamydomonas reinhardtii as added-value algal products, Bull. Natl. Res. Cent., 2019, vol. 43, Article 130.

    Article  Google Scholar 

  37. BGG. (2016). Health benefits and production methods of natural astaxanthin. bggworld.com

  38. Andrade, L.M., Andrade, C.J., Dias, M., Nascimento Claudio, A.O., and Mendes Maria, A., Chlorella and spirulina microalgae as sources of functional foods, nutraceuticals, and food supplements: An overview, MOJ Food Process Technol., 2018, vol. 6, p. 45.

    Article  Google Scholar 

  39. Madeira, M.S., Cardoso, C., Lopes, P.A., Coelho, D., Afonso, C., Bandarra, N.M., and Prates, J.A.M., Microalgae as feed ingredients for livestock production and meat quality: A review, Livest. Sci., 2017, vol. 205, p. 111.

    Article  Google Scholar 

  40. Eppink, M.H.M., Olivieri, G., Reith, H., van den Berg, C., Barbosa, M.J., and Wijffels, R.H., From current algae products to future biorefinery practices: A review, Adv. Biochem. Eng./Biotechnol., 2019, vol. 166, p. 99.

    CAS  Google Scholar 

  41. Voort, M.P.J., van der Vulsteke, E., and de Visser, C.L.M., Macro-economics of algae products. Public Output report of the En Algae project, Swansea. June 2015.

  42. Minhas, A.K., Hodgson, P., Barrow, C.J., and Adholeya, A., A review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids, Front. Microbiol., 2016, vol. 7.

  43. Dvoretsky, D., Dvoretsky, S., Temnov, M., Akulinin, E., Markin, I., Ustinskaya, Y., Yeskova, M., and Meronyuk, K., Research into the influence of cultivation conditions on the fatty acid composition of lipids of Chlorella vulgaris microalgae, Chem. Eng. Trans., 2020, vol. 79, p. 31.

    Google Scholar 

  44. Huang, A., Wu, S., Gu, W., Li, Y., Xie, X., and Wang, G., Provision of carbon skeleton for lipid synthesis from the breakdown of intracellular protein and soluble sugar in Phaeodactylum tricornutum under high CO2, BMC Biotechnol., 2019, vol. 19, Article 53.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ma, R., Wang, B., Chua, E.T., Zhao, X., Lu, K., Ho, S.-H., Liu, L., Xie, Y., Shi, X., Lu, Y., et al., Comprehensive utilization of marine microalgae for enhanced co-production of multiple compounds, Mar. Drugs, 2020, vol. 18, no. 9, p. 467.

    Article  CAS  PubMed Central  Google Scholar 

  46. Coronado-Reyes, J.A., Salazar-Torres, J.A., Juárez-Campos, B., and Gonzalez-Hernandez, J.C., Chlorella vulgaris, a microalgae important to be used in biotechnology: A review, Food Sci. Technol., 2020.

  47. Minhas, A.K., Hodgson, P., Barrow, C.J., and Adholeya, A., A review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids, Front. Microbiol., 2016, vol. 7.

  48. Dvoretsky, D., Dvoretsky, S., Temnov, M., Markin, I., Akulinin, E., Golubyatnikov, O., Ustinskaya, Y., and Eskova, M., Experimental research into the antibiotic properties of Chlorella vulgaris algal exometabolites, Chem. Eng. Trans., 2019, vol. 74, p. 1429.

    Google Scholar 

  49. Alsenani, F., Tupally, K.R., Chuac, E.T., Eltanahy, E., Alsufyani, H., Parekh, H.S., and Schenk, P.M., Evaluation of microalgae and cyanobacteria as potential sources of antimicrobial compounds, Saudi Pharm. J., 2020, vol. 28, no. 12, p. 1834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Eldridge, R.J., Hill, D.R.A., and Gladman, B.R., A comparative study of the coagulation behavior of marine microalgae, J. Appl. Phycol., 2012, vol. 24, p. 1667.

    Article  CAS  Google Scholar 

  51. Muylaert, K., Bastiaens, L., Vandamme, D., and Gouveia, L., Harvesting of microalgae: Overview of process options and their strengths and drawbacks, in Microalgae-Based Biofuels and Bioproducts: From Feedstock Cultivation to End-Products, Amsterdam: Elsevier, 2017, p. 113.

    Google Scholar 

  52. Vandamme, D., Beuckels, A., Vadelius, E., Depraetere, O., Noppe, W., Dutta, A., Foubert, I.L.L., and Muylaert, K., Inhibition of alkaline flocculation by algal organic matter for Chlorella vulgaris, Water Res., 2016, vol. 88, p. 301.

    Article  CAS  PubMed  Google Scholar 

  53. Dvoretskii, D.S., Dvoretskii, S.I., Temnov, M.S., et al., Technology of Production of Lipids from Microalgae: A Monograph, Tambov: TGTU, 2015.

    Google Scholar 

  54. Baudelet, P.-H., Ricochon, G., Linder, M., and Muniglia, A., New insight into cell walls of chlorophyta, Algal Res., 2017, vol. 25, p. 333.

    Article  Google Scholar 

  55. Al Hattab, M., Ghaly, A., and Hammoud, A., Microalgae harvesting methods for industrial production of biodiesel: Critical review and comparative analysis, J. Fundam. Renewable Energy Appl., 2015.

  56. Xia, L., Li, Y., Huang, R., and Song, S., Effective harvesting of microalgae by coagulation–flotation, R. Soc. Open Sci., 2017, vol. 4, no. 11, Article 170867.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Molina-Grima, E., Belarbi, E., Acien, G., Robles, A., and Chisti, Y., Recovery of microalgal biomass and metabolites: Process options and economics, Biotechnol. Adv., 2003, vol. 20, p. 491.

    Article  CAS  PubMed  Google Scholar 

  58. Lee, S.Y., Cho, J.M., Chang, Y.K., and Oh, Y.K., Cell disruption and lipid extraction for microalgal biorefineries: A review, Bioresour. Technol., 2017, vol. 244, p. 1317.

    Article  CAS  PubMed  Google Scholar 

  59. Cronmiller, E., Toor, D., Shao, N.C., Kariyawasam, T., Wang, M.H., and Lee, J.H., Cell wall integrity signaling regulates cell wall regeneration via transcriptional activation in Chlamydomonas reinhardtii, Sci. Rep., 2019, vol. 21.

  60. Jegathese, S.J.P. and Farid, M., Microalgae as a renewable source of energy: A niche opportunity, J. Renewable Energy, 2014, p. 1.

  61. Lardon, L., Helias, A., Sialve, B., Steyer, J.P., and Bernard, O., Life-cycle assessment of biodiesel production from microalgae, Environ. Sci. Technol., 2009, vol. 43, p. 6475.

    Article  CAS  PubMed  Google Scholar 

  62. Lee, A.K., Lewis, D.M., and Ashman, P.J., Disruption of microalgal cells for the extraction of lipids for biofuels: Processes and specific energy requirements, Biomass Bioenergy, 2012, vol. 46, p. 89.

    Article  CAS  Google Scholar 

  63. Günerken, E., D’Hondt, E., Eppink, M., Garcia-Gonzalez, L., Elst, K., and Wijffels, R.H., Cell disruption for microalgae biorefineries, Biotechnol. Adv., 2015, vol. 33, no. 2, p. 243.

    Article  PubMed  Google Scholar 

  64. Roux, J.-M. and Lamotte, H., An overview of microalgae lipid extraction in a biorefinery framework, Energy Procedia, 2017, vol. 112, p. 680.

    Article  Google Scholar 

  65. Dong, T., Knoshaug, E.P., Pienkos, P.T., and Laurens, M.L.M., Lipid recovery from wet oleaginous microbial biomass for biofuel production: A critical review, Appl. Energy, 2016, vol. 177, p. 879.

    Article  CAS  Google Scholar 

  66. Show, K.Y., Lee, D.J., Tay, J.H., Lee, T.M., and Chang, J.S., Microalgal drying and cell disruption—recent advances, Bioresour. Technol., 2015, vol. 184, p. 258.

    Article  CAS  PubMed  Google Scholar 

  67. Drira, N., Dhouibi, N., Hammami, S., Piras, A., Rosa, A., Porcedda, S., and Dhaouadi, H., Fatty acids from high rate algal pond’s microalgal biomass and osmotic stress effects, Bioresour. Technol., 2017, vol. 244, pp. 860.

    Article  CAS  PubMed  Google Scholar 

  68. Kim, J., Yoo, G., Lee, H., Lim, J., Kim, K., Kim, C.W., Park, M.S., and Yang, J.W., Methods of downstream processing for the production of biodiesel from microalgae, Biotechnol. Adv., 2013, vol. 31, p. 862.

    Article  CAS  PubMed  Google Scholar 

  69. Lenneman, E.M., Wang, P., and Barney, B.M., Potential application of algicidal bacteria for improved lipid recovery with specific algae, FEMS Microbiol. Lett., 2014, vol. 354, p. 102.

    Article  CAS  PubMed  Google Scholar 

  70. Demuez, M., Gonzalez-Fernandez, C., and Ballesteros, M., Algicidal microorganisms and secreted algicides: New tools to induce microalgal cell disruption, Biotechnol. Adv., 2015, vol. 33, p. 1615.

    Article  CAS  PubMed  Google Scholar 

  71. Dvoretsky, D., Dvoretsky, S., Temnov, M., Tugolukov, E., Akulinin, E., Golubyatnikov, O., Ustinskaya, Y., and Eskova, M., The study of the lipid extraction process for the production of third-generation biofuel from the pre-treated microalgae Chlorella vulgaris biomass, Chem. Eng. Trans., 2019, vol. 74, p. 73.

    Google Scholar 

  72. Ferreira, G.F., Pinto, L.F.R., Rubens, M.F., and Fregolente, L.V., A review on lipid production from microalgae: Association between cultivation using waste streams and fatty acid profiles, Renewable and Sustainable Energy Rev., 2019, vol. 109, p. 448.

    Article  CAS  Google Scholar 

  73. Halim, R., Danquah, M.K., and Webley, P.A., Extraction of oil from microalgae for biodiesel production: A review, Biotechnol. Adv., 2012, vol. 30, p. 709.

    Article  CAS  PubMed  Google Scholar 

  74. UniProt. www.uniprot.org/. Accessed May 24, 2021.

  75. Enzyme Database—BRENDA. www.brenda-enzymes.org/. Accessed May 24, 2021.

  76. NCBI (National Center for Biotechnology Information Search Database). www.ncbi.nlm.nih.gov/. Accessed May 24, 2021.

  77. Expasy: Swiss Bioinformatics Resource Portal. www.expasy.org/. Accessed May 24, 2021.

  78. AlgaeBase. www.algaebase.org/. Accessed May 24, 2021.

  79. Zuciga, C., Levering, J., Antoniewicz, M.R., Guarnieri, M.T., Betenbaugh, M.J., and Zengler, K., Predicting dynamic metabolic demands in the photosynthetic eukaryote Chlorella vulgaris, Plant Physiol., 2017, vol. 176, p. 450.

    Google Scholar 

  80. Terzer, M., Maynard, N.D., Covert, M.W., and Stelling, J., Genome-scale metabolic networks, Wiley Interdiscip. Rev.: Syst. Biol. Med., 2009, vol. 1, p. 285.

    CAS  Google Scholar 

  81. Boyle, N.R., Sengupta, N., and Morgan, J.A., Metabolic flux analysis of heterotrophic growth in Chlamydomonas reinhardtii, PLoS One, 2017, vol. 12.

  82. Shah, A.R., Ahmad, A., Srivastava, S., and Jaffar Ali, B.M., Reconstruction and analysis of a genome-scale metabolic model of Nannochloropsis gaditana, Algal Res., 2017, vol. 26, p. 354.

    Article  Google Scholar 

  83. Yoshikawa, K., Kojima, Y., Nakajima, T., Furusawa, C., Hirasawa, T., and Shimizu, H., Reconstruction and verification of a genome-scale metabolic model for Synechocystis sp. PCC6803, Appl. Microbiol. Biotechnol., 2011, vol. 92, p. 347.

    Article  CAS  PubMed  Google Scholar 

  84. Lim, D.K.Y., Schuhmann, H., Thomas-Hall, S.R., Chan, K.C.K., Wass, T.J., Aguilera, F., Adarme-Vega, T.C., Dal’Molin, C.G.O., Thorpe, G.J., Batley, J., et al., RNA-seq and metabolic flux analysis of Tetraselmis sp. M8 during nitrogen starvation reveals a two-stage lipid accumulation mechanism, Bioresour. Technol., 2017, vol. 244, p. 1281.

    Article  CAS  PubMed  Google Scholar 

  85. Bogen, C., Al-Dilaimi, A., Albersmeier, A., Wichmann, J., Grundmann, M., Rupp, O., Lauersen, K.J., Blifernez-Klassen, O., Kalinowski, J., Goesmann, A., et al., Reconstruction of the lipid metabolism for the microalga Monoraphidium neglectum from its genome sequence reveals characteristics suitable for biofuel production, BMC Genomics, 2013, vol. 14, no. 926.

  86. Krumholz, E.W., Yang, H., Weisenhorn, P., Henry, C.S., and Libourel, I.G.L., Genome-wide metabolic network reconstruction of the picoalga Ostreococcus, J. Exp. Bot., 2012, vol. 63, p. 2353.

    Article  CAS  PubMed  Google Scholar 

  87. Baroukh, C., Tamayo, R., Steyer, J.P., and Bernard, O., DRUM: A new framework for metabolic modeling under non-balanced growth. application to the carbon metabolism of unicellular microalgae, PLoS One, 2013, vol. 12.

  88. Levering, J., Broddrick, J., Dupont, C.L., Peers, G., Beeri, K., Mayers, J., Gallina, A.A., Allen, A.E., Palsson, B.O., and Zengler, K., Genome-scale model reveals metabolic basis of biomass partitioning in a model diatom, PLoS One, 2016, vol. 11, p. 1.

    Article  Google Scholar 

  89. Tibocha-Bonilla, J.D., Zuñiga, C., Godoy-Silva, R.D., and Zengler, K., Advances in metabolic modeling of oleaginous microalgae, Biotechnol. Biofuels, 2018, vol. 11, Article 241.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Shevtsov, A.A., Lytkina, L.I., Antipov, S.T., Ostrikov, A.N., Shentsova, E.S., Drannikov, A.V., and Koptev, D.V., Mathematical modelling of light dependent microorganisms cultivation in countercurrent film reactor, Theor. Found. Chem. Technol., 2016, vol. 50, no. 3, p, 355.

  91. GenBank Overview—NCBI—NIH. www.ncbi.nlm.nih.gov/genbank/. Accessed May 24, 2021.

  92. MetaCyc: Metabolic pathways from all domains of life, https://metacyc.org/. Accessed May, 24, 2021.

  93. The European Bioinformatics Institute—EMBL—EBI. www.ebi.ac.uk/. Accessed May 24, 2021.

  94. DDBJ. www.ddbj.nig.ac.jp/. Accessed May 24, 2021.

  95. Chen, K., Gao, Y., Mih, N., O’Brien, E.J., Yang, L., and Palsson, B.O., Thermosensitivity of growth is determined by chaperone-mediated proteome reallocation, Proc. Natl. Acad. Sci., 2017, vol. 114, p. 11548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Singh, D. and Lercher, M.J., Network reduction methods for genome-scale metabolic models, Cell. Mol. Life Sci., 2020, vol. 77, p. 481.

    Article  CAS  PubMed  Google Scholar 

  97. Orth, D.J., Thiele, I., and Palsson, Ø.B., What is flux balance analysis? Nat. Biotechnol., 2010, vol. 28, p. 245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Flassig, R.J., Fachet, M., Höffner, K., Barton, P.I., and Sundmacher, K., Dynamic flux balance modeling to increase the production of high-value compounds in green microalgae, Biotechnol. Biofuels, 2016, vol. 9, Article 165.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Raman, K. and Chandra, N., Flux balance analysis of biological systems: Applications and challenges, Briefings Bioinf., 2009, vol. 10, no. 4, p. 435.

    Article  CAS  Google Scholar 

  100. Brunner, J.D. and Chia, N., Minimizing the number of optimizations for efficient community dynamic flux balance analysis, PLoS Comput. Biol., 2020, vol. 29. https://doi.org/10.1101/2020.03.12.988592

  101. Martinez, V.S., Buchsteiner, M., Gray, P., Nielsen, L.K., and Quek, L.-E., Dynamic metabolic flux analysis using B-splines to study the effects of temperature shift on CHO cell metabolism, Metab. Eng. Commun., 2015, vol. 2, p. 46.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Miyawaki, A., Sriydthsak, K., Hirai, M.Y., and Shiraishi, F., Dynamic flux balance analysis to evaluate the strain production performance on shikimic acid production in Escherichia coli, Math. Biosci., 2016, vol. 282.

  103. Tourigny, D.S., Goldberg, A.P., and Karr, J.R. Simulating single-cell metabolism using a stochastic flux-balance analysis algorithm, Bioiv: The Preprint Server for Biology, 2020. https://doi.org/10.1101/2020.05.22.110577

  104. Rowe, E., Palsson, B.O., and King, Z.A., Escher-FBA: A web application for interactive flux balance analysis, BMC Syst. Biol., 2018, vol. 12, Article 84. https://doi.org/10.1186/s12918-018-0607-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Heirendt, L., et al., Creation and analysis of biochemical constraint-based models: Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0, Nat. Res., 2019, vol. 14, p. 639.

    CAS  Google Scholar 

  106. Qian, X., Kim, M.K., Kumaraswamy, G.K., Agarwal, A., Lun, D.S., and Dismukes, G.C., Flux balance analysis of photoautotrophic metabolism: uncovering new biological details of subsystems involved in cyanobacterial photosynthesis, Biochim. Biophys. Acta, Bioenerg., 2017, vol. 1858, no. 4, p. 276.

    Article  CAS  Google Scholar 

  107. Vitkin, E., Gillis, A., Polikovsky, M., Bender, B., Golberg, A., and Yakhini, Z., Distributed flux balance analysis simulations of serial biomass fermentation by two organisms, PLoS One, 2020.

  108. Gerstl, M.P., Ruckerbauer, D.E., Mattanovich, D., Jungreuthmayer, C., and Zanghellini, J., Metabolomics integrated elementary flux mode analysis in large metabolic networks, Sci. Rep., 2015, vol. 5, Article 8930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Loira, N., Mendoza, S., Paz Cortés, M., Rojas, N., Travisany, D., Di Genova, A., et al., Reconstruction of the microalga Nannochloropsis salina genome-scale metabolic model with applications to lipid production, BMC Syst. Biol., 2017, vol. 11, Article 66.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Mahadevan, R., Edwards, J.S., and Doyle, F.J., Dynamic flux balance analysis of diauxic growth in Escherichia coli, Biophys. J., 2002, vol. 83, p. 1331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Nadal-Rey, G., McClure, D.D., Kavanagh, J.M., Cornelissen, S., Fletcher, D.F., and Gernaey, K.V., Development of dynamic compartment models for industrial aerobic fed-batch fermentation processes, Chem. Eng. J., 2021, vol. 420, no. 3, Article 130402.

    Article  CAS  Google Scholar 

  112. Bitog, J.P., Lee, I.B., Lee, C.G., Kim, K.S., Hwang, H.S., Hong, S.W., Seo, I.H., Kwon, K.S., and Mostafa, E., Application of computational fluid dynamics for modeling and designing photobioreactors for microalgae production: A review, Comput. Electron. Agric., 2011, vol. 76, no. 2, p. 131. https://doi.org/10.1016/j.compag.2011.01.015

    Article  Google Scholar 

  113. Crater, J.S. and Lievense, J.C., Scale-up of industrial microbial processes, FEMS Microbiol. Lett., 2018, vol. 365, no. 13, July 2018, fny138. https://doi.org/10.1093/femsle/fny138

Download references

Funding

This study was financially supported by the Russian Foundation for Basic Research (project no. 20-18-50229).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Dvoretsky.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Smolina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dvoretsky, D.S., Temnov, M.S., Markin, I.V. et al. Problems in the Development of Efficient Biotechnology for the Synthesis of Valuable Components from Microalgae Biomass. Theor Found Chem Eng 56, 425–439 (2022). https://doi.org/10.1134/S0040579522040224

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579522040224

Keywords:

Navigation