Skip to main content
Log in

The use of a solar photoelectrochemical reactor for sustainable production of energy

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The conversion of solar energy into H2 via water splitting process is one of the most attractive ways to obtain clean and renewable energy. Unfortunately, the fast back reaction of recombination and high band gap needed to activate the photo-catalytic materials, strongly limit the performances in conventional slurry photo-reactors. In this context we present a new photoelectrochemical approach with a double-chamber reactor configuration for H2 production by water photo-electrolysis. The core of the photo-system is a membrane electrode assembly consisting of different layers which hold distinct two areas of the reactor where the generation of O2 and H2 occurs separately. Particular attention is given to the development, on a nano-scale level, of the materials to be used as photoanode and electrocathode: nanostructured TiO2 arrays and carbon nanotubes are used respectively in the form of thin films separated by a proton conductive membrane. Results showed 3.2 mmol h−1 g−1 of H2 evolution that is about one order of magnitude higher with respect to the activity obtained with conventional slurry photoreactors. Moreover, we present the opportunity to recycle CO2 back to liquid fuels by using the same photoelectrochemical approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balzani, V., Credi, A., and Venturi, M., Photochemical Conversion of Solar Energy. ChemSusChem, 2008, vol. 1, nos. 1–2, p. 26.

    Article  CAS  Google Scholar 

  2. Dovi, V.G., Friedler, F., Huisingh, D., and Klemes, J.J., Cleaner Energy for Sustainable Future, J. Cleaner Prod., 2009, vol. 17, p. 889.

    Article  Google Scholar 

  3. Muradov, N.Z. and Veziroglu, T.N., “Green” Path from Fossil-Based to Hydrogen Economy: An Overview of Carbon-Neutral Technologies, Int. J. Hydrogen Energy, 2008, vol. 33, p. 6804.

    Article  CAS  Google Scholar 

  4. Centi, G. and van Santen, R.A., Catalysis for Renewables, Weinheim: Wiley, 2007.

    Book  Google Scholar 

  5. Centi, G., Trifiro, F., Perathoner, S., and Cavani, F., Sustainable Industrial Chemistry, Weinheim: Wiley, 2009.

    Google Scholar 

  6. Centi, G., Perathoner, S., Passalacqua, R., and Ampelli, C., Solar Production of Fuels from Water and CO2, in Carbon-Neutral Fuels and Energy Carriers: Science and Technology, Muradov, N.Z. and Veziroglu T.N., Eds., Boca Raton, Fla.: CRC, 2011.

    Google Scholar 

  7. Bockris, J.O., Hydrogen no Longer a High Cost Solution to Global Warming: New Ideas, Int. J. Hydrogen Energy, 2008, vol. 33, p. 2129.

    Article  CAS  Google Scholar 

  8. Maeda, K. and Domen, K., Photocatalytic Water Splitting: Recent Progress and Future Challenges, J. Phys. Chem. Lett., 2010, vol. 1, no. 18, p. 2655.

    Article  CAS  Google Scholar 

  9. Kelly, N.A. and Gibson, T.L., Solar Energy Concentrating Reactors for Hydrogen Production by Photoelectrochemical Water Splitting, Int. J. Hydrogen Energy, 2008, vol. 33, p. 6420.

    Article  CAS  Google Scholar 

  10. Ampelli, C., Passalacqua, R., Perathoner, S. and Centi, G., H2 Production by Water Photo-Electrolysis by Using a Novel TiO2 Nanotube Array-Based Photoreactor, AIDIC Conf. Ser., 2011, vol. 10, p. 19.

    Google Scholar 

  11. Daud, W.R. and Kassim, M.B., An Overview of Photocells and Photoreactors for Photoelectrochemical Water Splitting, Int. J. Hydrogen Energy, 2010, vol. 35, p. 5233.

    Article  Google Scholar 

  12. Tseng, C.J. and Tseng, C.L., The Reactor Design for Photoelectrochemical Hydrogen Production, Int. J. Hydrogen Energy, 2011, vol. 36, p. 6510.

    Article  CAS  Google Scholar 

  13. Kim, E.Y., Park, J.H. and Han, G.Y., Design of TiO2 Nanotube Array-Based Water-Splitting Reactor for Hydrogen Generation, J. Power Sources, 2008, vol. 184, no. 1, p. 284.

    Article  CAS  Google Scholar 

  14. Ampelli, C., Centi, G., Passalacqua, R., and Perathoner, S., Synthesis of Solar Fuels by Novel Photoelectrocatalytic Approach, Energy Environ. Sci., 2010, vol. 3, p. 292.

    Article  CAS  Google Scholar 

  15. Ampelli, C., Passalacqua, R., Perathoner, S., and Centi, G., Nano-Engineered Materials for H2 Production by Water Photo-Electrolysis, Chem. Eng. Trans., 2009, vol. 17, p. 1011.

    Google Scholar 

  16. Key World Energy Statistics, Paris: International Energy Agency, 2009.

  17. Lewis, N.S., Crabtree, G., Nozik, A., et al., Basic Research Needs for Solar Energy Utilization, Washington, DC: US Department of Energy, 2005.

    Book  Google Scholar 

  18. Ampelli, C., Passalacqua, R., Perathoner, S. and Centi, G., Development of a TiO2 Nanotube Array-Based Photoreactor for H2 Production by Water Splitting, Chem. Eng. Trans., 2011, vol. 24, p. 187.

    Google Scholar 

  19. Matsuoka, M., Kitano, M., Takeuchi, M., et al., Photocatalysis for New Energy Production, Catal. Today, 2007, vol. 122, nos. 1–2, p. 51.

    Article  CAS  Google Scholar 

  20. Mor, G.K., Varghese, O.K., Paulose, M., et al., A Review on Highly Ordered, Vertically Oriented TiO2 Nanotube Arrays: Fabrication, Material Properties, and Solar Energy Applications, Sol. Energy Mater. Sol. Cells, 2006, vol. 90, p. 2011.

    Article  CAS  Google Scholar 

  21. Centi, G. and Perathoner, S., Nano-Architecture and Reactivity of Titania Catalytic Materials. Part 2. Bidimensional Nanostructured Films, Catalysis, 2008, vol. 21, p. 82.

    Article  Google Scholar 

  22. Ampelli, C., Passalacqua, R., Perathoner, S., et al., Synthesis of TiO2 Thin Films: Relationship between Preparation Conditions and Nanostructure, Top. Catal., 2008, vol. 50, p. 133.

    Article  CAS  Google Scholar 

  23. Evtushenko, Yu.M., Romashkin, S.V., and Davydov, V.V., Synthesis and Properties of TiO2-Based Nanomaterials, Theor. Found. Chem. Eng., 2011, vol. 45, no. 5, p. 731.

    Article  CAS  Google Scholar 

  24. Rudnev, V.S., Medkov, M.A., Steblevskaya, N.I., et al., Pt/SiO2 and Pt/TiO2/Ti Compositions and Their Catalytic Properties, Theor. Found. Chem. Eng., 2011, vol. 45, no. 4, p. 496.

    Article  CAS  Google Scholar 

  25. Ampelli, C., Passalacqua, R., Genovese, C., et al., A Novel Photo-Electrochemical Approach for the Chemical Recycling of Carbon Dioxide to Fuels, Chem. Eng. Trans., 2011, vol. 25, p. 683.

    Google Scholar 

  26. DuBois, D.L., Electrochemical Reactions of Carbon Dioxide, in Encyclopedia of Electrochemistry, Weinheim: Wiley, 2006, vol. 7A.

    Google Scholar 

  27. Passalacqua, R., Ampelli, C., Perathoner, S., and Centi, G., Photoactive Nanosized Materials Based on TiO2 for Solar Energy Applications, EPA Newsletter, 2011, p. 28.

  28. Mills, A., Elliott, N., Hill, G., et al., Preparation and Characterization of Novel Thick Sol-Gel Titania Film Photocatalysts, Photochem. Photobiol. Sci., 2003, vol. 2, p. 591.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Ampelli.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ampelli, C., Genovese, C., Passalacqua, R. et al. The use of a solar photoelectrochemical reactor for sustainable production of energy. Theor Found Chem Eng 46, 651–657 (2012). https://doi.org/10.1134/S0040579512060012

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579512060012

Keywords

Navigation