Skip to main content
Log in

Gamma and Neutron Spectrometers Designed for Installation Onboard the Lunar Rover

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

The paper presents the scientific tasks, description, and comparison of various gamma and neutron spectrometers that can be installed on board a medium-class lunar rover with a mass up to 100 kg. As a specific example, we consider the scientific equipment proposed for the future Russian mission Luna-Grunt, the main purpose of which is the delivery of lunar polar regolith samples to the Earth. Presumably, the payload of this mission allows for inclusion of a small lunar rover with a mass between 30 and 100 kg. For this reason, the paper considers options for a gamma and neutron spectrometer that would allow finding the optimal ratio between scientific requirements and resources available on board such a lunar rover.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Beyerle, A., Hurley, J.P., and Tunnell, L., Design of an associated particle imaging system, Nucl. Instrum. Methods, 1990, vol. 299, nos. 1–3, pp. 458–462.

    Article  ADS  Google Scholar 

  2. Boynton, W.V., Feldman, W.C., Squyres, S.W., Prettyman, T.H., Bruckner, J., Evans, L.G., Reedy, R.C., Starr, R., Arnold, J.R., Drake, D.M., Englert, P.A., Metzger, A.E., Mitrofanov, I., Trombka, J., d’Uston, C., et al., Distribution of hydrogen in the near surface of Mars: evidence for subsurface ice deposits, Science, 2002, vol. 297, pp. 81–85.

    Article  ADS  Google Scholar 

  3. Boynton, W.V., Feldman, W.C., Mitrofanov, I.G., Evans, L.G., Reedy, R.C., Squyres, S.W., Starr, R., Trombka, J., D’Uston, C., Arnold, J.R., Englert, P.A., Metzger, A.E., Wanke, H., Bruckner, J., Drake, D.M., et al., The Mars Odyssey gamma-ray spectrometer instrument suite, Space Sci. Rev., 2004, vol. 110, pp. 37–83.

    Article  ADS  Google Scholar 

  4. Boynton, W.V., Taylor, G.J., Evans, L.G., Reedy, R.C., Starr, R., Janes, D.M., Kerry, K.E., Drake, D.M., Kim, K.J., Williams, R.M.S., Crombie, M.K., Dohm, J.M., Baker, V., Metzger, A.E., Karunatillake, S., et al., Concentration of H, Si, Cl, K, Fe, and Th in the low- and mid-latitude regions of Mars, J. Geophys. Res.: Planets, 2006, vol. 112, p. E12S99.

    ADS  Google Scholar 

  5. Bystritsky, V.M., Gerasimov, V.V., Kadyshevsky, V.G., Kobzev, A.P., Nozdrin, A.A., Rogov, Yu.N., Rapatsky, V.L., Sadovsky, A.B., Salamatin, A.V., Sapozhnikov, M.G., Sissakian, A.N., Slepnev, I.V., Slepnev, V.M., Utkin, V.A., Zamyatin, N.I., et al., DViN—stationary setup for identification of explosives, Phys. Part. Nucl. Lett., 2008, vol. 5, pp. 441–446.

    Article  Google Scholar 

  6. Bystritsky, V.M., Zamyatin, N.I., Zubarev, E.V., Rapatsky, V.L., Rogov, Yu.N., Romanov, I.V., Sadovsky, A.B., Salamatin, A.V., Sapozhnikov, M.G., Safonov, M.V., Slepnev, V.M., and Philipov, A.V., Stationary setup for identifying explosives using the tagged neutron method, Phys. Part. Nucl. Lett., 2013, vol. 10, pp. 442–446.

    Article  Google Scholar 

  7. Evans, L.G., Reedy, R.C., Starr, R.D., Kerry, K.E., and Boynton, W.V., Analysis of gamma ray spectra measured by Mars Odyssey, J. Geophys. Res.: Planets, 2006, vol. 111, p. E03S04.

    ADS  Google Scholar 

  8. Evans, L.G., Peplowski, P.N., Rhodes, E.A., Lawrence, D.J., McCoy, T.J., Nittler, L.R., Solomon, S.C., Sprague, A.L., Stockstill-Cahill, K.R., Starr, R.D., Weider, S.Z., Boynton, W.V., Hamara, D.K., and Goldsten, J.O., Major-element abundances on the surface of Mercury: results from the MESSENGER gamma-ray spectrometer, J. Geophys. Res.: Planets, 2012, vol. 117, p. E00L07.

    Article  Google Scholar 

  9. Goldsten, J.O., Rhodes, E.A., Boynton, W.V., Feldman, W.C., Lawrence, D.J., Trombka, J., Smith, D.M., Evans, L.G., White, J., Madden, N.W., Berg, P.C., Murphy, G.A., Gurnee, R.S., Strohbehn, K., Williams, B.D., et al., The MESSENGER gamma-ray and neutron spectrometer, Space Sci. Rev., 2007, vol. 131, pp. 339–391.

    Article  ADS  Google Scholar 

  10. Golovin, D., Litvak, M., Kozyrev, A., Tretiyakov, V., Sanin, A., Vostrukhin, A., Mitrofanov, I., and Malakhov, A., Neutron activation analysis on the surface of the Moon and other terrestrial planets, Proc. 40th COSPAR Scientific Assembly, Moscow, 2014, no. B0.1-43-14.

  11. Golovin, D.V., Litvak, M.L., Mitrofanov, I.G., Vostrukhin, A.A., Dubasov, P.V., Zontikov, A.O., Kozyrev, A.S., Krylov, A.R., Krylov, V.A., Mokrousov, M.I., Repkin, A.N., Sanin, A.B., Timoshenko, G.N., Udovichenko, K.V., and Shvetsov, V.N., Comparison of sensitivities of semiconductor (HPGe) and scintillation (CeBr3) detectors in the measurement of gamma spectra induced by neutrons in the model of planetary soil, Phys. Part. Nucl. Lett., 2018, vol. 15, no. 5, pp. 524–530.

    Article  Google Scholar 

  12. Grotzinger, J.P., Crisp, J., Vasavada, A.R., Anderson, R.C., Baker, C.J., Barry, R., Blake, D.F., Conrad, P., Edgett, K.S., Ferdowski, B., Gellert, R., Gilbert, J.B., Golombek, M., Gómez-Elvira, J., Hassler, D.M., et al., Mars science laboratory mission and science investigation, Space Sci. Rev., 2012, vol. 170, pp. 5–56.

    Article  ADS  Google Scholar 

  13. Hasebe, N., Shibamura, E., Miyachi, T., Takashima, T., Kobayashi, M., Okudaira, O., Yamashita, N., Kobayashi, S., Karouji, Y., Hareyama, M., Kodaira, S., Hayatsu, K., Iwabuchi, K., Nemoto, S., Sakurai, K., et al., High performance germanium gamma-ray spectrometer on Lunar polar orbiter SELENE (KAGUYA), Trans. Space Technol. Jpn., 2010, vol. 7, pp. 35–41.

    Google Scholar 

  14. Litvak, M.L., Mitrofanov, I.G., Barmakov, Yu.N., Behar, A., Bitulev, A., Bobrovnitsky, Yu., Bogolubov, E.P., Boynton, W.V., Bragin, S.I., Churin, S., Grebennikov, A.S., Konovalov, A., Kozyrev, A.S., Kurdumov, I.G., Krylov, A., et al., The Dynamic Albedo of Neutrons (DAN) experiment for NASA’s 2009 Mars Science Laboratory, Astrobiology, 2008, vol. 8, no. 3, pp. 605–612.

    Article  ADS  Google Scholar 

  15. Litvak, M.L., Mitrofanov, I.G., Sanin, A.B., Lisov, D.I., Behar, A., Boynton, W.V., Deflores, L., Fedosov, F., Golovin, D., Hardgrove, C., Harshman, K., Jun, I., Kozyrev, A.S., Kuzmin, R.O., Malakhov, A., et al., Local variations of bulk hydrogen and chlorine-equivalent neutron absorption content measured at the contact between the Sheepbed and Gillespie Lake units in Yellowknife Bay, Gale Crater, using the DAN instrument onboard Curiosity, J. Geophys. Res.: Planets, 2014, vol. 119, no. 6, pp. 1259–1275.

    Article  ADS  Google Scholar 

  16. Litvak, M.L., Mitrofanov, I.G., Hardgrove, C., Stack, K.M., Sanin, A.B., Lisov, D., Boynton, W.V., Fedosov, F., Golovin, D., Harshman, K., Jun, I., Kozyrev, A.S., Kuzmin, R.O., Malakhov, A., Milliken, R., et al., Hydrogen and chlorine abundances in the Kimberley formation of Gale crater measured by the DAN instrument on board the Mars Science Laboratory Curiosity rover, J. Geophys. Res.: Planets, 2016, vol. 21, no. 5, pp. 836–845.

    Article  ADS  Google Scholar 

  17. Litvak, M.L., Sanin, A.B., Golovin, D.V., Jun, I., Mitrofanov, I.G., Shvetsov, V.N., Timoshenko, G.N., and Vostrukhin, A.A., Ground tests with prototype of CeBr3 active gamma ray spectrometer proposed for future Venus surface missions, Nucl. Instrum. Methods Phys. Res.,Sect. A, 2017, vol. 848, pp. 9–18.

    Google Scholar 

  18. Litvak, M.L., Barmakov, Y.N., Belichenko, S.G., Bestaev, R.R., Bogolubov, E.P., Gavrychenkov, A.V., Kozyrev, A.S., Mitrofanov, I.G., Nosov, A.V., Sanin, A.B., Shvetsov, V.N., Yurkov, D.I., and Zverev, V.I., Associated particle imaging instrumentation for future planetary surface missions, Nucl. Instrum. Methods Phys. Res.,Sect. A, 2019, vol. 922, pp. 19–27.

    Google Scholar 

  19. Mitrofanov, I., Anfimov, D., Kozyrev, A., Litvak, M., Sanin, A., Tret’yakov, V., Krylov, A., Shvetsov, V., Boynton, W., Shinohara, C., Hamara, D., and Saunders, R.S., Maps of Subsurface Hydrogen from the high energy neutron detector, Mars Odyssey, Science, 2002, vol. 297, no. 5578. P. 78–81.

    Article  ADS  Google Scholar 

  20. Mitrofanov, I.G., Kozyrev, A.S., Konovalov, A., Litvak, M.L., Malakhov, A.A., Mokrousov, M.I., Sanin, A.B., Tret’ykov, V.I., Vostrukhin, A.V., Bobrovnitskij, Yu.I., Tomilina, T.M., Gurvits, L., and Owens, A., The Mercury Gamma and Neutron Spectrometer (MGNS) on board the planetary orbiter of the BepiColombo mission, Planet. Space Sci., 2010, vol. 58, nos. 1–2, pp. 116–124.

    Article  ADS  Google Scholar 

  21. Mitrofanov, I.G., Litvak, M.L., Barmakov, Yu.I., Behar, A., Bobrovnitsky, Yu.I., Bogolubov, E.P., Boynton, W.V., Harshman, K., Kan, E., Kozyrev, A.S., Kuzmin, R.O., Malakhov, A.V., Mokrousov, M.I., Ryzhkov, V.I., Sanin, A.B., Smirnov, G.A., et al., Experiment for measurements of Dynamic Albedo of Neutrons (DAN) onboard NASA’s Mars Science Laboratory, Space Sci. Rev., 2012, vol. 170, nos. 1–4, pp. 559–582.

    Article  ADS  Google Scholar 

  22. Mitrofanov, I.G., Litvak, M.L., Sanin, A.B., Starr, R.D., Lisov, D.I., Kuzmin, R.O., Behar, A., Boynton, W.V., Hardgrove, C., Harshman, K., Jun, I., Milliken, R.E., Mischna, M.A., Moersch, J.E., and Tate, C.G., Water and chlorine content in the Martian soil along the first 1900 m of the Curiosity rover traverse as estimated by the DAN instrument, J. Geophys. Res.: Planets, 2014, vol. 119, no. 7, pp. 1579–1596.

    Article  ADS  Google Scholar 

  23. Mitrofanov, I.G., Litvak, M.L., Nikiforov, S.Y., Jun, I., Bobrovnitsky, Y.I., Golovin, D.V., Grebennikov, A.S., Fedosov, F.S., Kozyrev, A.S., Lisov, D.I., Malakhov, A.V., Mokrousov, M.I., Sanin, A.B., Shvetsov, V.N., Timoshenko, G.N., et al., The ADRON-RM instrument onboard the ExoMars Rover, Astrobiology, 2017, vol. 17, nos. 6–7, pp. 585–594.

    Article  ADS  Google Scholar 

  24. Mitrofanov, I., Malakhov, A., Bakhtin, B., Golovin, D., Kozyrev, A., Litvak, M., Mokrousov, M., Sanin, A., Tretyakov, V., Vostrukhin, A., Anikin, A., Zelenyi, L.M., Semkova, J., Malchev, S., Tomov, B., et al., Fine Resolution Epithermal Neutron Detector (FREND) onboard the ExoMars Trace Gas Orbiter, Space Sci. Rev., 2018, vol. 2 14, no. 5, art. ID 86.

  25. Parsons, A., Bodnarik, J., Evans, L., Floyd, S., Lim, L., McClanahan, T., Namkung, M., Nowicki, S., Schweitzer, J., Starr, R., and Trombka, J., Active neutron and gamma-ray instrumentation for in situ planetary science applications, Nucl. Instrum. Methods Phys. Res.,Sect. A, 2011, vol. 652, pp. 674–679.

    Google Scholar 

  26. Prettyman, T.H., Hagerty, J.J., Elphic, R.C., Feldman, W.C., Lawrence, D.J., McKinney, G.W., and Vaniman, D.T., Elemental composition of the lunar surface: analysis of gamma ray spectroscopy data from Lunar Prospector, J. Geophys. Res.: Planets, 2006, vol. 111, no. E12.

  27. Prettyman, T.H., Feldman, W.C., McSween, H.Y., Dingler, R.D., Enemark, D.C., Patrick, D.E., Storms, S.A., Hendricks, J.S., Morgenthaler, J.P., Pitman, K.M., and Reedy, R.C., Dawn’s gamma-ray and neutron detector, Space Sci. Rev., 2011, vol. 163, nos. 1–4, pp. 371–459.

    Article  ADS  Google Scholar 

  28. Prettyman, T.H., Mittlefehldt, D.W., Yamashita, N., Lawrence, D.J., Beck, A.W., Feldman, W.C., McCoy, T.J., McSween, H.Y., Toplis, M.J., Titus, T.N., Tricarico, P., Reedy, R.C., Hendricks, J.S., Forni, O., Le Corre, L., et al., Elemental mapping by Dawn reveals exogenic H in Vesta’s regolith, Science, 2012, vol. 338, no. 6104, pp. 242–246.

    Article  ADS  Google Scholar 

  29. Surkov, Yu.A., Kirnozov, F.F., Glazov, V.N., Dunchenko, A.G., Tatsy, L.P., and Sobornov, O.P., Uranium, thorium, and potassium in the Venusian rocks at the landing sites of VEGA 1 and 2, J. Geophys. Res.: Solid Earth, 1987, vol. 92, no. 4, pp. E537–E540.

    Article  Google Scholar 

  30. Vago, J.L., Westall, F., Coates, A.J., Jaumann, R., Korablev, O., Ciarletti, V., Mitrofanov, I., Josset, J.-L., De Sanctis, M.C., Bibring, J.-P., Rull, F., Goesmann, F., Steininger, H., Goetz, W., Brinckerhoff, W., et al., Habitability on early Mars and the search for biosignatures with the ExoMars Rover, Astrobiology, 2017, vol. 17, nos. 6–7, pp. 471–510.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Litvak.

Additional information

Translated by M. Chubarova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Litvak, M.L., Golovin, D.V., Djachkova, M.V. et al. Gamma and Neutron Spectrometers Designed for Installation Onboard the Lunar Rover. Sol Syst Res 54, 275–287 (2020). https://doi.org/10.1134/S0038094620040073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094620040073

Keywords:

Navigation