Skip to main content
Log in

Tribocorrosion Behaviors of NiTi/AlNi2Ti Intermetallic Alloy in NaCl Solution

  • PHYSICAL CHEMISTRY OF SOLUTIONS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

A novel NiTi/AlNi2Ti ternary intermetallic alloy were prepared by arc melting. Tribocorrosion behaviors of the NiTi/AlNi2Ti alloy were investigated by tribocorrosion tests. The results showed that NiTi/AlNi2Ti alloy had an excellent tribocorrosion resistance in NaCl solution and is more suitable as a tribocorrosion resistant material than 1Cr18Ni9Ti stainless steel. With the onset of sliding, the OCP of NiTi/AlNi2Ti alloy decreases and the corrosion current density increases during tribocorrosion test, and the decrease of the OCP is proportional to the increase of the frictional force, showing a strong corrosion-wear synergy effect. The corrosion current density and wear loss volume of the NiTi/AlNi2Ti alloy increase with the increase of applied potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. J. Liu, J. Zhang, L. J. Deng, et al., Surf. Eng. 35, 59 (2019).

    Article  Google Scholar 

  2. L. Yuan and H. M. Wang, Electrochim. Acta 54, 421 (2008).

    Article  Google Scholar 

  3. X. D. Du, J. Q. Wang, G. D. Sun, et al., Mater. Sci. Eng. A 477, 277 (2008).

    Article  Google Scholar 

  4. E. Huttunen-Saarivirta, L. Kilpi, T. J. Hakala, et al., Tribol. Int. 95, 358 (2016).

    Article  Google Scholar 

  5. D. D. Liang, X. S. Wei, T. C. Ma, et al., J. Non-Cryst. Solids 510, 62 (2019).

    Article  Google Scholar 

  6. B. Sefer and S. Virtanen, Corros. Sci. 154, 287 (2019).

    Article  Google Scholar 

  7. G. Song, Z. Q. Sun, J. D. Poplawsky, et al., Acta Mater. 127, 1 (2017).

    Article  Google Scholar 

  8. L. J. Zheng, F. X. Zhang, R. G. Ding, et al., Mater. Des. 110, 494 (2016).

    Article  Google Scholar 

  9. A. Dębski, W. Gąsior, A. Sypień, et al., Intermetallics 42, 92 (2013).

  10. Y. Koizumi, Y. Ro, S. Nakazawa, et al., Mater. Sci. Eng. A 223, 36 (1997).

    Article  Google Scholar 

  11. M. Farvizi, T. Ebadzadeh, M. R. Vaezi, et al., Wear 334–335, 35 (2015).

    Article  Google Scholar 

  12. H. R. Sichani, M. Salehi, H. Edris, et al., Surf. Coat. Technol. 309, 959 (2017).

    Article  Google Scholar 

  13. J. C. Schuster, Z. Pan, S. H. Liu, et al., Intermetallics 15, 1257 (2007).

    Article  Google Scholar 

  14. T. Shao, F. F. Ge, Y. Dong, et al., Wear 416–417, 44 (2018).

    Article  Google Scholar 

  15. P. Nash and W. W. Liang, Metall. Trans. A 16, 319 (1985).

    Article  Google Scholar 

  16. F. Pougoum, J. C. Qian, L. Martinu, et al., Surf. Coat. Technol. 357, 774 (2019).

    Article  Google Scholar 

  17. Y. Sun and E. Haruman, Surf. Coat. Technol. 205, 4280 (2011).

    Article  Google Scholar 

  18. Y. Wang, S. L. Jiang, Y. G. Zheng, et al., Corros. Sci. 63, 159 (2012).

    Article  Google Scholar 

  19. L. Liu, Y. Li, and F. H. Wang, J. Mater. Sci. Technol. 26 (1), 1 (2010).

    Article  Google Scholar 

  20. H. H. Hassan, Electrochim. Acta 51, 526 (2005).

    Article  Google Scholar 

  21. L. Liu, Y. Li, and F. H. Wang, Electrochim. Acta 53, 2453 (2008).

    Article  Google Scholar 

  22. M. Fazel, H. R. Salimijazi, and M. Shamanian, ACS Appl. Mater. Interfaces 10, 15281 (2018).

    Article  Google Scholar 

  23. J. Xu, L. L. Liu, P. Munroe, et al., J. Mater. Chem. A 1, 10281 (2013).

    Article  Google Scholar 

  24. L. Yuan and H. M. Wang, Intermetallics 16, 1149 (2008).

    Article  Google Scholar 

  25. Q. Chen, Z. W. Xie, T. Chen, et al., Materials 9, 963 (2016).

    Article  Google Scholar 

  26. P. Močnik, T. Kosec, J. Kovač, et al., Mater. Sci. Eng. C 78, 682 (2017).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research was supported by the Funded by the “Qizhi” Talent Cultivation Project of Lanzhou Institute of Technology (grant no. 2020QZ-02), Higher Education Innovation Fund Project of Gansu Province of China (grant no. 2021B-314). The authors acknowledge Lei Huang for their assistance on experiments of arc melting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. N. Liang.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J.X., Liang, B.N. & Guo, X.R. Tribocorrosion Behaviors of NiTi/AlNi2Ti Intermetallic Alloy in NaCl Solution. Russ. J. Phys. Chem. 96, 2894–2899 (2022). https://doi.org/10.1134/S0036024422130271

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024422130271

Keywords:

Navigation