Skip to main content
Log in

Microwave Dielectric Permittivity and the Relaxation of 1,3-Dioxolane and 2,2-Dimethyl-1,3-dioxolane-4-methanol Aqueous Solutions

  • PHYSICAL CHEMISTRY OF SOLUTIONS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Results are presented from measuring the microwave dielectric properties of aqueous solutions of 1,3-dioxolane and 2,2-dimethyl-1,3-dioxolane-4-methanol at seven frequencies in the range of 5–25 GHz and temperatures of 288, 298, and 308 K. The static dielectric constants are considered, along with the times and parameters of activation of the dielectric relaxation process. Differences between hydration-induced changes in water and the effects of interaction between different groups of molecules are established for the solutions of the considered compounds. The dynamics of water molecules in solution is slowed, compared to that in pure water in both cases. It is established that this slowing is due to different molecular mechanisms of interaction between the dissolved species and the tetrahedral network of the H-bonds of the initial water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. L. A. Yanovskaya, S. S. Yufit, and V. F. Kucherov, Chemistry of Acetals (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  2. A. L. Balashov, S. M. Danov, and A. Yu. Chernov, Russ. J. Appl. Chem. 71, 584 (1998).

    Google Scholar 

  3. S. Trohalaki, R. Pachter, and J. R. Cummings, Energy Fuels 13, 992 (1999).

    Article  CAS  Google Scholar 

  4. US Patent No. 2003/0163949 A1 (2003).

  5. S. D. Varfolomeev, G. A. Nikiforov, V. B. Vol’eva, G. G. Makarov, and L. I. Trusov, RF Patent No. 2365617 (2009).

  6. D. Ondo and V. Dohnal, Fluid Phase Equilib. 262, 121 (2007).

    Article  CAS  Google Scholar 

  7. A. L. Balashov et al., Zh. Prikl. Khim. 71, 1616 (1998).

    CAS  Google Scholar 

  8. S. P. Chopade et al., J. Chem. Eng. Data 48, 44 (2003).

    Article  CAS  Google Scholar 

  9. H. S. Wu and S. I. Sandler, J. Chem. Eng. Data 34, 209 (1989).

    Article  CAS  Google Scholar 

  10. K. Kurihara et al., J. Chem. Eng. Data 48, 102 (2003).

    Article  CAS  Google Scholar 

  11. M. A. Yakovleva, I. V. Prikhod’ko, I. B. Pukinskii, and N. A. Smirnova, Vestn. SPbGU, Ser. 4: Fiz. Khim., No. 2, 112 (2011).

  12. A. K. Lyashchenko, Adv. Chem. Phys. 87, 379 (1994).

    CAS  Google Scholar 

  13. A. K. Lyashchenko, T. A. Novskova, A. S. Lileev, and V. S. Kharkin, J. Mol. Liq. 93, 29 (2001).

    Article  CAS  Google Scholar 

  14. D. V. Loginova, A. S. Lileev, A. K. Lyashchenko, and L. S. Aladko, J. Non-Cryst. Solids 351, 2882 (2005).

    Article  CAS  Google Scholar 

  15. D. V. Loginova, A. S. Lileev, A. K. Lyashchenko, K. S. Ivanova, and V. S. Khar’kin, Russ. J. Inorg. Chem. 48, 1541 (2003).

    Google Scholar 

  16. D. V. Loginova, A. S. Lileev, A. K. Lyashchenko, and V. S. Kharkin, Mendeleev Commun., No. 2, 68 (2003).

  17. A. K. Lyashchenko and A. Yu. Zasetsky, J. Mol. Liq. 77, 61 (1998).

    Article  CAS  Google Scholar 

  18. A. K. Lyashchenko, V. S. Khar’kin, A. S. Lileev, A. Yu. Zasetskii, and P. V. Efremov, Russ. J. Phys. Chem. A 74, 529 (2000).

    Google Scholar 

  19. D. V. Loginova, A. S. Lileev, A. K. Lyashchenko, and V. S. Khar’kin, Russ. J. Inorg. Chem. 48, 278 (2003).

    Google Scholar 

  20. A. K. Lyashchenko, I. V. Balakaeva, L. M. Timofeeva, and A. S. Lileev, Russ. J. Inorg. Chem. 65 (2020, in press).

  21. A. K. Lyashchenko and A. S. Lileev, J. Chem. Eng. Data 55, 2008 (2010).

    Article  CAS  Google Scholar 

  22. A. K. Lyashchenko, A. S. Lileev, and I. M. Karataeva, Modern Problems of General and Inorganic Chemistry (Moscow, 2009), p. 316 [in Russian].

    Google Scholar 

  23. A. A. Brandt, Study of Insulators on Superhigh Frequences (Fizmatlit, Moscow, 1963) [in Russian].

    Google Scholar 

  24. J. B. Hasted, Aqueous Dielectrics (Chapman and Hall, London, 1973).

    Google Scholar 

  25. J. Barthel, R. Buchner, and M. Munsterer, Electrolyte Data Collection, Part 2: Dielectric Properties of Water and Aqueous Electrolyte Solutions, Chemistry Data Ser. (Dechema, Frankfurt am Main, 1995), Vol. 12, Part 2.

    Google Scholar 

Download references

Funding

This work was performed as part of a State Task for the Kurnakov Institute of General and Inorganic Chemistry in the field of fundamental research. It was supported by the Russian Foundation for Basic Research, project no. 19-03-00033.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. K. Lyashchenko or I. V. Balakaeva.

Additional information

Translated by Z. Smirnova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyashchenko, A.K., Balakaeva, I.V., Smirnova, N.A. et al. Microwave Dielectric Permittivity and the Relaxation of 1,3-Dioxolane and 2,2-Dimethyl-1,3-dioxolane-4-methanol Aqueous Solutions. Russ. J. Phys. Chem. 95, 90–96 (2021). https://doi.org/10.1134/S0036024421010167

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024421010167

Keywords:

Navigation