Skip to main content
Log in

Structural, Phonon, Electronic and Thermoelectric Properties of Zr0.25Ti0.75GeSb

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

This paper explores structural, phonon, electronic and thermoelectric properties of Zr0.25Ti0.75GeSb. By doping 0.25 Zr to TiGeSb the space group of this compound changes to P4/mm. Lattice constants and bulk modulus demonstrate relative increase compared to TiGeSb. This increment is low and expected. Furthermore, phonon calculations of Zr0.25Ti0.75GeSb were carried out by Quantum Espresso code. Electronic and thermoelectric calculations were performed using Wien2k software and accessory code Boltztrap. This compound has metallic nature and contribution of i orbitals among atoms with d orbital for atom “Ti1” is the highest. In thermoelectric properties, figure of merit of Zr0.25Ti0.75GeSb is significantly increased compared to bulk of TiGeSb in both xx and zz directions at low temperatures. However, at high temperatures it is lower.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. F. Heusler, W. Starck, and E. Haupt, Verh. Deutsch. Phys. Ges. 5, 220 (1903).

    Google Scholar 

  2. J. Heusler, Verh. Deutsch. Phys. Ges. 5, 219 (1903).

    CAS  Google Scholar 

  3. I. Offernes, P. Ravindran, and A. Kjekshus, J. Alloys Compd. 439, 37 (2007).

    Article  CAS  Google Scholar 

  4. H. C. Kandpal, C. Felser, and R. Seshadri, J. Phys. D: Appl. Phys. 39, 776 (2006).

    Article  CAS  Google Scholar 

  5. J. Tobola and J. Pierre, J. Alloys Compd. 296, 243 (2000).

    Article  CAS  Google Scholar 

  6. A. Boochani, H. Khosravi, J. Khodadadi, S. Solaymani, M. M. Sarmazdeh, R. Taghavi Mendi, and S. M. Elahi, Commun. Theor. Phys. 63, 641 (2015).

    Article  CAS  Google Scholar 

  7. R. Bentata, S. Bentata, B. Bouadjemi, T. Lantri, and D. Chenine, Chin. J. Phys. 59, 28 (2019).

    Article  CAS  Google Scholar 

  8. A. Anjami, A. Boochani, S. M. Elahi, and H. Akbari, Results. Phys. 73, 522 (2017).

    Google Scholar 

  9. U. F. Ozyar, E. Deligoz, and K. Colakoglu, Solid State Sci. 40, 92 (2015).

    Article  CAS  Google Scholar 

  10. E. Lendvay, Acta Phys. Acad. Sci. Hung. 51, 353 (1981).

    Article  CAS  Google Scholar 

  11. D. P. Rai, A. Shankar, Sandeep, M. P. Ghimire, R. Khenata, and R. K. Thapa, RSC Adv. 6, 13358 (2016).

    Article  CAS  Google Scholar 

  12. D. Parker, A. F. May, H. Wang, M. A. McGuire, B. C. Sales, and D. J. Singh, Phys. Rev. B 87, 045205 (2013).

    Article  Google Scholar 

  13. R. Lam and A. Mar, Acta Crystallogr., E 65, i68 (2009).

    Article  CAS  Google Scholar 

  14. E. Dashjav and H. Kleinke, Z. Anorg. Allgem. Chem. 628, 2176 (2002).

    Google Scholar 

  15. H. Joshi, D. P. Rai, K. Verma, K. C. Bhamu, and R. K. Thapa, J. Alloys Compd. 726, 1155 (2017).

    Article  CAS  Google Scholar 

  16. E. Deligoz, U. F. Ozyar, and H. B. Ozisik, Philos. Mag. 96, 1712 (2016).

    Article  CAS  Google Scholar 

  17. A. Fazeli Kisomi, B. Nedaee-Shakarab, A. Boochani, H. Akbari, and S. J. Mousavi, Phys. Solid State 61, 1969 (2019).

    Article  Google Scholar 

  18. M. Gurth, G. Rogl, V. V. Romaka, A. Grytsiv, E. Bauer, and P. Rogl, Acta Mater. 104, 210 (2016).

    Article  Google Scholar 

  19. D. Wang, G. Wang, and W. Li, J. Alloys Compd. 692, 599 (2017).

    Article  CAS  Google Scholar 

  20. P. Blaha, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2K, an Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Vienna, Austria, 2008).

  21. G. K. H. Madsen and D. J. Singh, Comput. Phys. Commun. 175, 67 (2006).

    Article  CAS  Google Scholar 

  22. P. Giannozzi et al., J. Phys.: Condens. Matter 21, 395502 (2009).

    Google Scholar 

  23. J. Perdew, K. P. Burke, and M. Ernzerhoff, Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  24. F. D. Murnaghan, Proc. Natl. Acad. Sci. U. S. A. 30, 244 (1944).

    Article  CAS  Google Scholar 

  25. A. F. Kisomi and S. J. Mousavi, Pramana J. Phys. 91, 18 (2018).

    Google Scholar 

  26. R. A. D. Groot, F. M. Mueller, P. G. V. Engen, and K. H. J. Buschow, Phys. Rev. Lett. 50, 2024 (1983).

    Article  Google Scholar 

  27. M. K. Yadav and B. Sanyal, J. Alloys Compd. 622, 388 (2015).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Physics Research Center at Islamic Azad University Ardabil Branch, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Nedaee-Shakarab.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fazeli Kisomi, A., Nedaee-Shakarab, B., Boochani, A. et al. Structural, Phonon, Electronic and Thermoelectric Properties of Zr0.25Ti0.75GeSb. Russ. J. Phys. Chem. 94, 2770–2777 (2020). https://doi.org/10.1134/S0036024420130117

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024420130117

Keywords:

Navigation