Skip to main content
Log in

Sensing Behavior of Hexagonal-Aluminum Nitride to Phosgene Molecule Based on Van der Waals–Density Functional Theory and Molecular Dynamic Simulation

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

In this paper, we evaluated adsorption of phosgene gas molecule (COCl2), on the hexagonal-aluminum nitride (h-AlN) nanosheet by using first-principles van der Waals density functional theory calculations (vdW-DF) method. The nature of interaction between the phosgene molecule and h-AlN is discovered by geometries, adsorption energies, Mulliken, Hirshfeld as well as Voronoi charges analyses. The density of states (DOS) was calculated and the results show that HOMO/LUMO energy gap of h-AlN is significantly reduced upon the COCl2 adsorption. The projected density of states (PDOS) of the adsorption systems suggested that the enhancement of adsorption was owing to the hybridization between Al atom of h-AlN sheet and the O atom of phosgene molecule. Interestingly, the results reveal that the Eg of h-AlN is very sensitive to the presence of COCl2 molecule as its value reduces from 3.337 eV in pure h-AlN to 1.966 eV (41.08% change) after the COCl2 adsorption which would result in electrical conductance increment. Global reactivity descriptor values such as electronegativity (χ), global hardness (η), global softness (S), electronic chemical potential (μ), electrophilicity index (ω), and electro accepting power (ω+) were calculated. Additionally, the stability of the most stable phosgene/h-AlN complex was evaluated by means of DFT molecular dynamics (MD) simulation at room temperature under constant volume and temperature conditions with PBE method. Based on the DFT calculation results, the h-AlN nano sheet is expected to be potential novel sensor for detecting the presence of COCl2 gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. S. C. Gad and H. L. Kaplan, Combustion Toxicology (CRC, Boca Raton, FL, 1990).

    Google Scholar 

  2. E. Hardy, Phosgene, Kirk-Othmer Encyclopaedia of Chemical Technology (Wiley, New York, 1971).

    Google Scholar 

  3. S. Virji, R. Kojima, J. Fowler, J. G. Villanueva, R. B. Kaner, and B. H. Weiller, Nano Res. 2, 135 (2009).

    Article  CAS  Google Scholar 

  4. M. Burnworth, S. Rowan, and J. Weder, Chem. Eur. J. 13, 7828 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. C. Tabtimsai, S. Keawwangchai, N. Nunthaboot, V. Ruangpornvisuti, and B. Wanno, J. Mol. Model. 18, 3941 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. A. Kaushik, R. Kumar, S. Arya, M. Nair, B. Malhotra, and S. Bhansali, Chem. Rev. 115, 4751 (2015).

    Article  CAS  Google Scholar 

  7. B. C. Wood, S. Y. Bhide, D. Dutta, V. S. Kandagal,  A. D. Pathak, S. N. Punnathanam, K. G. Ayappa, and S. Narasimhan, J. Chem. Phys. 137, 054702 (2012).

    Article  PubMed  CAS  Google Scholar 

  8. X. Zhang, Z. Dai, Q. Chen, and Ju Tang, Phys. Scr. 89, 065803 (2014).

    Article  CAS  Google Scholar 

  9. M. D. Ganji and M. Rezvani, J. Mol. Model. 19, 1259 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. M. D. Ganji, N. Seyed-Aghaei, M. M. Taghavi, M. Rezvani, and F. Kazempour, Fullerenes Nanotubes Carbon Nanostruct. 19, 289 (2011).

    Article  CAS  Google Scholar 

  11. P. Błoński and N. López, J. Phys. Chem. C 116, 15484 (2012).

    Article  CAS  Google Scholar 

  12. M. Breedon, M. J. S. Spencer, and I. Yarovsky, J. Phys. Chem. C 114, 16603 (2010).

    Article  CAS  Google Scholar 

  13. A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Y. Zhang, J. W. Tan, H. L. Stormer, and P. Kim, Nature (London, U.K.) 438, 201 (2005).

    Article  CAS  Google Scholar 

  15. F. Zhang, Q. Wu, X. Wang, N. Liu, J. Yang, Y. Hu, L. Yu, X. Wang, Z. Hu, and J. Zhu, J. Phys. Chem. C 113, 4053 (2009).

    Article  CAS  Google Scholar 

  16. X. Zhang, Z. Liu, and S. Hark, Solid State Commun. 143, 317 (2007).

    Article  CAS  Google Scholar 

  17. S. F. Rastegar, A. A. Peyghan, H. R. Ghenaatian, and N. L. Hadipour, Appl. Surf. Sci. 274, 217 (2013).

    Article  CAS  Google Scholar 

  18. Y. Jiao, A. Du, Z. Zhu, V. Rudolph, and S. C. Smith, J. Phys. Chem. C 114, 7846 (2010).

    Article  CAS  Google Scholar 

  19. P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964).

    Article  Google Scholar 

  20. W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).

    Article  Google Scholar 

  21. P. Ordejon, E. Artacho, and J. Soler, Phys. Rev. B 53, 10441 (1996).

    Article  Google Scholar 

  22. D. Sanchez-Portal, P. Ordejon, E. Artacho, and J. M. Soler, Int. J. Quantum Chem. 65, 453 (1997).

    Article  Google Scholar 

  23. J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, P. Ordejon, and D. Sanchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002).

    CAS  Google Scholar 

  24. R. O. Jones and O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989).

    Article  CAS  Google Scholar 

  25. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).

    Article  CAS  Google Scholar 

  27. E. M. Fernández and L. C. Balbás, Phys. Chem. Chem. Phys. 13, 20863 (2011)

    Article  PubMed  CAS  Google Scholar 

  28. D. J. Carter and A. L. Rohl, J. Chem. Theory Comput. 8, 281 (2011)

    PubMed  Google Scholar 

  29. M. Rezvani, M. D. Ganji, and M. Faghihnasiri, Phys. E 52, 27 (2013).

    Article  CAS  Google Scholar 

  30. M. D. Ganji, M. Nashtahosseini, S. Yeganegi, and M. Rezvani, J. Mol. Model. 194, 1929 (2013).

    Article  CAS  Google Scholar 

  31. M. Sabet and M. D. Ganji, J. Mol. Model. 199, 4013 (2013).

  32. Z. Bagheri and A. Peyghan, Comput. Theor. Chem. 1008, 20 (2013).

    Article  CAS  Google Scholar 

  33. Merck Index, 11th ed. 7310

  34. M. D. Ganji, S. Jameh-Bozorgi, and M. Rezvani, Appl. Surf. Sci. 384, 175 (2016).

    Article  CAS  Google Scholar 

  35. M. Rezvani, M. D. Ganji, and S. Jameh-Bozorgi, Appl. Surf. Sci. 360, 69 (2016).

    Article  CAS  Google Scholar 

  36. F. L. Hirshfeld, Theor. Chim. Acta 44, 129 (1977).

    Article  CAS  Google Scholar 

  37. C. F. Guerra, J. W. Handgraaf, E. J. Baerends, and F. M. Bickelhaupt, J. Comput. Chem. 25, 189 (2003).

    Article  CAS  Google Scholar 

  38. G. J. M. Velders and D. Feil, Theor. Chim. Acta 84, 195 (1992).

    Article  CAS  Google Scholar 

  39. G. J. M. Velders, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. van Gisbergen, J. G. Snijders, and T. Ziegler, J. Comput. Chem. 22, 931 (2001).

    Article  Google Scholar 

  40. Z. M. Ao, J. Yang, S. Li, and Q. Jiang, Chem. Phys. Lett. 461, 276 (2008).

    Article  CAS  Google Scholar 

  41. S. Li, Semiconductor Physical Electronic, 2nd ed. (Springer, USA, 2006).

    Book  Google Scholar 

  42. Y. H. Zhang, Y. B. Chen, K. G. Zhou, C. H. Liu, J. Zeng, H. L. Zhang, and Y. Peng, Nanotechnology 20, 185504 (2009).

    Article  PubMed  CAS  Google Scholar 

  43. S. F. Rastegar, N. L. Hadipour, and H. Soleymanabadi, J. Mol. Model. 20, 2439 (2014).

    Article  PubMed  CAS  Google Scholar 

  44. R. G. Parr and Y. Weitao, Density Functional Theory of Atoms and Molecules (Oxford Univ. Press, New York, 1989).

    Google Scholar 

  45. T. Koopmans, Physica (Amsterdam, Neth.) 1, 104 (1934).

  46. R. G. Parr and R. G. Pearson, J. Am. Chem. Soc. 105, 7512 (1983).

    Article  CAS  Google Scholar 

  47. J. Martínez, Chem. Phys. Lett. 478, 310 (2009).

    Article  CAS  Google Scholar 

  48. G. L. Gázquez, Struct Bond. 80, 27 (1993).

    Article  Google Scholar 

  49. R. G. Parr, L. V. Szentpály, and S. Liu, J. Am. Chem. Soc. 121, 1922 (1999).

    Article  CAS  Google Scholar 

  50. J. L. Gázquez, A. Cedillo, and A. Vela, J. Phys. Chem. A 111, 1966 (2007).

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to acknowledge the financial support from the Office of the Vice-Chancellor in charge of research of Arak branch, Islamic Azad University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Jamehbozorgi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banibairami, T., Jamehbozorgi, S., Ghiasi, R. et al. Sensing Behavior of Hexagonal-Aluminum Nitride to Phosgene Molecule Based on Van der Waals–Density Functional Theory and Molecular Dynamic Simulation. Russ. J. Phys. Chem. 94, 581–589 (2020). https://doi.org/10.1134/S0036024420030048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024420030048

Keywords:

Navigation