Skip to main content
Log in

Dynamical regimes of two frequency different chemical oscillators coupled via pulse inhibitory coupling with time delay

  • Photochemistry and Magnetochemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Resonance regimes of two frequency different chemical oscillators coupled via pulsed inhibitory coupling with time delay τ have been studied theoretically and experimentally. The Belousov-Zhabotinsky reaction is used as a chemical oscillator. Regions of the 1: 1, 2: 3, 1: 2, 2: 5, and 1: 3 resonances, as well as complex oscillations and a regime in which one oscillator is suppressed have been found in the parameter plane “the ratio between the T 2/T 1-τ.” For the 1: 2 resonance, a sharp transition from one synchronized regime (called “0/0.5”) to the other one (called “0.2/0.7”) has been found. This transition (reminiscent to the transition between in-phase and anti-phase oscillations in case of the 1: 1 resonance) is controlled by time delay τ and the coupling strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Cervellati and S. D. Furrow, Russ. J. Phys. Chem. A 87, 2121 (2013).

    Article  CAS  Google Scholar 

  2. B. L. Bassler and R. Losick, Cell 125, 237 (2006).

    Article  CAS  Google Scholar 

  3. A. Camilli and B. L. Bassler, Science (Washington, D.C.) 311, 1113 (2006).

    Article  CAS  Google Scholar 

  4. F. Frohlich, T. J. Sejnowski, and M. Bazhenov, J. Neurosci. 30, 10734 (2010).

    Article  CAS  Google Scholar 

  5. N. Kopell and G. B. Ermentrout, in Handbook of Dynamical Systems, Ed. by B. Fiedler (North Holland, Amsterdam, 2002), Vol. 2

  6. K. Bar-Eli, Phys. Chem. Chem. Phys. 13, 11606 (2011).

    Article  CAS  Google Scholar 

  7. A. F. Taylor et al., Science (Washington, D.C.) 323, 614 (2009).

    Article  CAS  Google Scholar 

  8. R. Dilão, Chaos 19, 023118 (2009).

    Article  Google Scholar 

  9. A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization. A Universal Concept in Nonlinear Sciences (Cambridge, Univ. Press, Cambridge, 2003).

    Google Scholar 

  10. K. Wiesenfeld, P. Colet, and S. H. Strogatz, Phys. Rev. Lett. 76, 404 (1996).

    Article  CAS  Google Scholar 

  11. M. Marek and I. Stuchl, Biophys. Chem. 3, 241 (1975).

    Article  CAS  Google Scholar 

  12. M. F. Crowley and I. R. Epstein, J. Phys. Chem. 93, 2496 (1989).

    Article  CAS  Google Scholar 

  13. K. Bar-Eli, J. Phys. Chem. 88, 3616 (1984).

    Article  CAS  Google Scholar 

  14. B. P. Belousov, in Collection of Works on Radiation Medicine (Medgiz, Moscow, 1959), pp. 145–152 [in Russian].

    Google Scholar 

  15. A. M. Zhabotinskii, Dokl. Akad. Nauk SSSR 157, 392 (1964).

    CAS  Google Scholar 

  16. M. N. Stolyarov, V. A. Romanov, and E. I. Volkov, Phys. Rev. E 54, 163 (1996).

    Article  CAS  Google Scholar 

  17. M. A. Taylor and I. G. Kevrekidis, Chem. Eng. Sci. 48, 2129 (1993).

    Article  CAS  Google Scholar 

  18. N. Hajos and O. Paulsen, Neuron Networks 22, 1113 (2009).

    Article  Google Scholar 

  19. V. Horvath, P. L. Gentili, V. K. Vanag, and I. R. Epstein, Angew. Chem., Int. Ed. Engl. 51, 6878 (2012).

    Article  CAS  Google Scholar 

  20. I. Potapov, E. Volkov, and A. Kuznetsov, Phys. Rev. E 83, 031901 (2011).

    Article  CAS  Google Scholar 

  21. V. K. Vanag and I. R. Epstein, Phys. Rev. E 81, 066213 (2010).

    Article  Google Scholar 

  22. P. Goel and B. Ermentrout, Phys. D 163, 191 (2002).

    Article  Google Scholar 

  23. E. M. Izhikevich, IEEE Trans. Neural Net. 10, 508 (1999).

    Article  CAS  Google Scholar 

  24. V. V. Klinshov and V. I. Nekorkin, Chaos Solitons Fractals 44, 98 (2011).

    Article  Google Scholar 

  25. J. M. Cruz et al., Phys. Rev. E 81, 046213 (2010).

    Article  CAS  Google Scholar 

  26. A. I. Lavrova and V. K. Vanag, Phys. Chem. Chem. Phys. 16, 6764 (2014). doi:10.1039/C3CP54373K

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Proskurkin.

Additional information

Original Russian Text © I.S. Proskurkin, V.K. Vanag, 2015, published in Zhurnal Fizicheskoi Khimii, 2015, Vol. 89, No. 2, pp. 340–344.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Proskurkin, I.S., Vanag, V.K. Dynamical regimes of two frequency different chemical oscillators coupled via pulse inhibitory coupling with time delay. Russ. J. Phys. Chem. 89, 331–335 (2015). https://doi.org/10.1134/S0036024415020223

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024415020223

Keywords

Navigation