Skip to main content
Log in

Coordination Polymers of Zinc, Nickel(II), and Manganese Trifluoroacetates with 1,4-Dioxane

  • COORDINATION COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The reactions of zinc, nickel(II), and manganese(II) acetate hydrates with excess trifluoroacetic acid in boiling 1,4-dioxane give coordination polymers (CPs): {[Zn3(µ-OH2)2(µ-OOCCF3)4(OOCCF3)2(OH2)2] [µ-O(CH2CH2)2O)]·3O(CH2CH2)2O}n (1, 81% yield), {[Ni2(µ-OH2)(µ-OOCCF3)2(OOCCF3)2 (OH2)2(O(CH2CH2)2O)]2[µ-O(CH2CH2)2O)]·5O(CH2CH2)2O}n (2, 89% yield), and {[Mn2(µ-OOCCF3)3(OOCCF3)(OH2)][µ-O(CH2CH2)O]2}n (4, 79% yield). According to X-ray diffraction data, the CP structure is determined by the nature of the transition metal. In polymer 1, the trinuclear Zn3(µ-OH2)2(µ-OOCCF3)4(OOCCF3)2(OH2)2 moieties (Zn···Zn, 3.6490(3) Å) are linked by bridging dioxane molecules to give zigzag-like 1D-CP, while the hydrogen atoms of coordinated water molecules form 2D-CP via intermolecular hydrogen bonds (HBs) with oxygen atoms of solvation solvent molecules. In CP 2, two binuclear Ni2(µ-OH2)(µ-OOCCF3)2(OOCCF3)2(OH2)2(O(CH2CH2)2O moieties (Ni···Ni, 3.5388(13) Å) in the tetranuclear Ni4 complex are linked by a bridging dioxane molecule, while the terminal and solvation solvent molecules form intermolecular HBs with the hydrogen atoms of the peripheral water molecules, thus giving 2D-CP. In the case of most electron-deficient Mn(II) ion, each metal atom in the binuclear complex Mn2(µ-OOCCF3)3(OOCCF3)(OH2) (Mn···Mn, 4.2487(5) Å) is bound to two bridging dioxane molecules to give 2D-CP, the dimensionality of which increases to 3D via the formation of intermolecular HBs between the terminal water molecule and the oxygen atom of the terminal and bridging carboxylate anion. It was also shown that in a similar reaction of Ni(OOCMe)2(OH2)4 with 2 moles of HOOCCF3 at room temperature, only anion exchange takes place, resulting in the polymer {Ni(OOCCF3)2(OH2)4⋅[O(CH2CH2)2O]}n (3). Apart from X-ray diffraction, the CPs were studied by chemical analysis and IR spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. F. A. Cotton, G. Wilkinson, C. A. Murillo, and M. Bochmann, Advanced Inorganic Chemistry (Wiley, New York, 1999).

    Google Scholar 

  2. R. C. Mehrotra and R. Bohra, Metal Carboxylates (Academic, London, 1983).

    Google Scholar 

  3. M. Becht, T. Gerfin, and K.-H. Dahmen, Helv. Chim. Acta 77, 1288 (1994). https://doi.org/10.1002/hlca.19940770511

    Article  CAS  Google Scholar 

  4. R. C. Pratt, L. M. Mirica, and T. D. P. Stack, Inorg. Chem. 43, 8030 (2004). https://doi.org/10.1021/ic048904z

    Article  CAS  PubMed  Google Scholar 

  5. Z. Tomkowicz, S. Ostrovsky, S. Foro, et al., Inorg. Chem. 51, (2012). https://doi.org/6046 10.1021/ic202529p

  6. E. A. Mikhalitsyna, V. S. Tyurin, S. E. Nefedov, et al., Eur. J. Inorg. Chem. 36, 5979 (2012). https://doi.org/10.1002/ejic.201200868

    Article  CAS  Google Scholar 

  7. S. Hiroto, K. Furukawa, H. Shinokubo, and A. Osuka, J. Am. Chem. Soc. 128, 12380 (2006). https://doi.org/10.1021/ja062654z

    Article  CAS  PubMed  Google Scholar 

  8. A. A. Sinelshchikova, S. E. Nefedov, Yu. Yu. Enakieva, et al., Inorg. Chem. 52, 999 (2013). https://doi.org/10.1021/ic302257g

    Article  CAS  PubMed  Google Scholar 

  9. I. L. Eremenko, V. M. Novotortsev, A. A. Sidorov, and I. G. Fomina, Ros. Khim. Zh. 48, 49 (2004).

    CAS  Google Scholar 

  10. H. Becker, G. Domschke, E. Fanghänel, and M. Fischer, Organikum, Organisch-chemisches Grundpraktikum (VEB Deutscher Verlag der Wissenschaften, Berlin, 1990; Mir, Moscow, 1992).

  11. SMART (Control) and SAINT (Integration) Software, Version 5.0, Bruker AXS, Inc. Madison, WI, 1997.

    Google Scholar 

  12. SMART: Area-Detector Integration Software, Bruker, Madison, WI, 603, 2012

    Google Scholar 

  13. G. M. Sheldrick, SADABS, Program for Scaling and Correction of Area Detector Data, Univ. of Göttingen (1997).

    Google Scholar 

  14. G. M. Sheldrick, Acta Crystallogr. C 71, 3 (2015). https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

  15. M. A. Uvarova and S. E. Nefedov, Russ. J. Coord. Chem. 46, 608 (2020). https://doi.org/10.1134/S1070328420090079

    Article  Google Scholar 

  16. V. Calvo-Perez, S. Ostrovsky, A. Vega, et al., Inorg. Chem. 45, 64410 (2006). https://doi.org/1021/ic051361o

    Article  Google Scholar 

  17. A. O. Tokareva, D. S. Tereshchenko, A. I. Boltalin, et al., Russ. J. Coord. Chem. 32, 691 (2006). https://doi.org/10.1134/S1070328406090077

    Article  CAS  Google Scholar 

  18. I. V. Morozov, E. V. Karpova, T. Yu. Glazunova, et al., Russ. J. Coord. Chem. 42, 647 (2016). https://doi.org/10.1134/S107032841610002X

    Article  CAS  Google Scholar 

  19. F. Calderazzo, U. Englert, G. Pampaloni, et al., Can. J. Chem. 79, 495 (2001). https://doi.org/10.1139/cjc-79-5-6-495

    Article  CAS  Google Scholar 

  20. C. P. Guntlin, Zund. Tanja, K. V. Kravchyk, et al., J. Mater. Chem. A 5, 7383 (2017). https://doi.org/10.1039/C7TA00862G

    Article  CAS  Google Scholar 

  21. B. D. Dhanapala, N. A. Mannino, L. M. Mendoza, et al., Dalton Trans. 46, 1420 (2017). https://doi.org/10.1039/C6DT04152C

    Article  Google Scholar 

  22. Z. Olejnik and T. Lis, Acta Crystallogr., Sect.C: Cryst. Struct. Commun. 56, 1310 (2000). https://doi.org/10.1107/S0108270100011215

    Article  Google Scholar 

  23. M. A. Uvarova and S. E. Nefedov, Russ. J. Coord. Chem. 47, 839 (2021). https//doi.org.10.31857/S0132344X21060086

  24. CSD, version 5.42 (November 2020).

Download references

ACKNOWLEDGMENTS

X-ray diffraction studies of the complexes and IR spectral studies were performed using research equipment of the Center for Collective Use of the Physical Investigation Methods of the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, supported by the state assignment for the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, in the field of fundamental research.

Funding

This study was supported by the state assignment for the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences in the field of fundamental research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Nefedov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Dedicated to the 80th anniversary of Professor Aleksandr Anatol’evich Pasynskii’s birth. In Memory of the Teacher

Translated by Z. Svitanko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uvarova, M.A., Nefedov, S.E. Coordination Polymers of Zinc, Nickel(II), and Manganese Trifluoroacetates with 1,4-Dioxane. Russ. J. Inorg. Chem. 66, 839–851 (2021). https://doi.org/10.1134/S0036023621060206

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023621060206

Keywords:

Navigation