Skip to main content
Log in

A Tri-Metallic (Mn–Co–Ti) Oxide Photoanode with Improved Photo-Conversion Efficiency

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

In extension to our previous work, studies have been conducted to illustrate the effect of incorporation of Co2O3 on photo-conversion efficiency of Mn2O3–4TiO2 composite thin films. Therefore, the bimetallic crystal [Mn2Ti4(TFA)8(THF)6(OH)4(O)2]⋅0.4THF (1) was mixed with Co(OAc)2 to fabricate Mn2O3–Co2O3–4TiO2 (MCT) thin films via aerosol-assisted chemical vapour deposition (AACVD) method. The thin films were properly characterized by X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X-ray (EDX), Atomic Force Microscopy (AFM) and UV-Vis spectroscopy to evaluate their crystalline structure, chemical composition, topography, surface roughness and band gaps. Finally, the films were subjected to record their photo-electrochemical response in terms of Linear Scan Voltammetry (LSV) and Electrochemical Impedance Spectroscopy (EIS) using 0.5 M NaOH electrolyte solution. A photocurrent density of 4.91 mA cm–2 was observed at 0.65 V vs Ag/AgCl/3M KCl with a promising photo conversion efficiency of 2.86%. Furthermore, impedance studies revealed a decrease in charge transfer resistance (Rct) from 123.79 to 56.43 Ω under illumination conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. S. Berardi, S. Drouet, L. Francàs, et al., Chem. Soc. Rev. 43, 7501 (2014). https://doi.org/10.1039/C3CS60405E

    Article  CAS  PubMed  Google Scholar 

  2. S. Styring, Faraday Discuss. 155, 357 (2012). https://doi.org/10.1039/C1FD00113B

    Article  CAS  PubMed  Google Scholar 

  3. Y. Tachibana, L. Vayssieres and J. R. Durrant, Nat. Photonics 6, 511 (2012). https://doi.org/10.1038/nphoton.2012.175

    Article  CAS  Google Scholar 

  4. M. A. Mansoor, K. Munawar, S. P. Lim, et al., New J. Chem. 41, 7322 (2017). https://doi.org/10.1039/C7NJ00513J

    Article  CAS  Google Scholar 

  5. M. Retegan and D. A. Pantazis, J. Am. Chem. Soc. 139, 14340 (2017). https://doi.org/10.1021/jacs.7b06351

    Article  CAS  PubMed  Google Scholar 

  6. M. A. Green, A. Ho-Baillie, and H. J. Snaith, Nat. Photon 8, 506 (2014). https://doi.org/10.1038/nphoton.2014.134

    Article  CAS  Google Scholar 

  7. M. Law, L. E. Greene, J. C. Johnson, et al., Nat. Mater. 4, 455 (2005). http://www.nature.com/nmat/journal/v4/n6/suppinfo/nmat1387_S1.html.

  8. A. Kafizas, S. Kellici, J. A. Darr, et al., J. Photochem. Photobiol. A 204, 183 (2009). https://doi.org/10.1016/j.jphotochem.2009.03.017

    Article  CAS  Google Scholar 

  9. J. Y. Oh, M. Shin, H. W. Lee, et al., ACS Appl. Mater. Interfaces, 6, 7759 (2014). https://doi.org/10.1021/am501034g

    Article  CAS  PubMed  Google Scholar 

  10. S. Ahmed, M. A. Mansoor, W. J. Basirun, et al., New J. Chem. 39, 1031 (2015). https://doi.org/10.1039/c4nj01602e

    Article  CAS  Google Scholar 

  11. K. Munawar, M. A. Mansoor, M. M. Olmstead, et al., Mater. Chem. Phys. 255, 123220 (2020). https://doi.org/10.1016/j.matchemphys.2020.123220

    Article  CAS  Google Scholar 

  12. D. A. Pankratov, A. A. Veligzhanin and Y. V. Zubavichus, Russ. J. Inorg. Chem. 58, 67 (2013). https://doi.org/10.1134/S0036023613010142

    Article  CAS  Google Scholar 

  13. E. P. D’yachkov and P. N. D’yachkov, Russ. J. Inorg. Chem. 64, 1152 (2019). https://doi.org/10.1134/S0036023619090080

    Article  Google Scholar 

  14. E. P. D’yachkov and P. N. D’yachkov, Russ. J. Inorg. Chem. 63, 1204 (2018). https://doi.org/10.1134/S0036023618090048

    Article  Google Scholar 

  15. A. Mondal, A. Paul, D. N. Srivastava, et al., Int. J. Hydrogen Energy 43, 21665 (2018). https://doi.org/10.1016/j.ijhydene.2018.06.139

    Article  CAS  Google Scholar 

  16. K. Nakata and A. Fujishima, J. Photochem. Photobiol. C 13, 169 (2012). https://doi.org/10.1016/j.jphotochemrev.2012.06.001

    Article  CAS  Google Scholar 

  17. S. Rehman, R. Ullah, A. M. Butt, et al., J. Hazard. Mater. 170, 560 (2009). https://doi.org/10.1016/j.jhazmat.2009.05.064

    Article  CAS  PubMed  Google Scholar 

  18. H. Park, Y. Park, W. Kim, et al., J. Photochem. Photobiol. C 15, 1 (2013). https://doi.org/10.1016/j.jphotochemrev.2012.10.001

    Article  CAS  Google Scholar 

  19. C. Y. Cummings, F. Marken, L. M. Peter, et al., J. Am. Chem. Soc. 134, 1228 (2012). https://doi.org/10.1021/ja209530s

    Article  CAS  PubMed  Google Scholar 

  20. X. Deng and H. Tüysüz, ACS Catal. 4, 3701 (2014). https://doi.org/10.1021/cs500713d

    Article  CAS  Google Scholar 

  21. P. Wang, G. Zhao, Y. Liu, et al., Appl. Catal. A 544, 77 (2017). https://doi.org/10.1016/j.apcata.2017.07.012

    Article  CAS  Google Scholar 

  22. R. Talebi, J. Mater. Sci.: Mater. Electron. 28, 8316 (2017). https://doi.org/10.1007/s10854-017-6546-x

    Article  CAS  Google Scholar 

  23. A. Anancia Grace, K. P. Divya, V. Dharuman, et al., Electrochim. Acta 302, 291 (2019). https://doi.org/10.1016/j.electacta.2019.02.053

    Article  CAS  Google Scholar 

  24. E. Park, H. A. Le, Y. S. Kim, et al., Mater. Res. Bull. 47, 1040 (2012). https://doi.org/10.1016/j.materresbull.2011.12.054

    Article  CAS  Google Scholar 

  25. M. Martins, B. Šljukić, C. A. C. Sequeira, et al., Appl. Surf. Sci. 428, 31 (2018). https://doi.org/10.1016/j.apsusc.2017.09.132

    Article  CAS  Google Scholar 

  26. M. A. Mansoor, A. Ismail, R. Yahya, et al., Inorg. Chem. 52, 5624 (2013). https://doi.org/10.1021/ic302772b

    Article  CAS  PubMed  Google Scholar 

  27. M. A. Mansoor, M. Ebadi, M. Mazhar, et al., Mater. Chem. Phys. 186, 286 (2017). https://doi.org/10.1016/j.matchemphys.2016.10.055

    Article  CAS  Google Scholar 

  28. M. A. Mansoor, M. Mazhar, V. McKee, et al., Polyhedron 75, 135 (2014). https://doi.org/10.1016/j.poly.2014.03.018

    Article  CAS  Google Scholar 

  29. M. A. Mansoor, M. Mazhar, A. Pandikumar, et al., Int. J. Hydrogen Energy 41, 9267 (2016). https://doi.org/10.1016/j.ijhydene.2016.04.121

    Article  CAS  Google Scholar 

  30. M. A. Mansoor, S. P. Lim, F. B. Yusof, et al., J. Electron. Mater. 48, 4375 (2019). https://doi.org/10.1007/s11664-019-07224-4

    Article  CAS  Google Scholar 

  31. A. A. Tahir, K. C. Molloy, M. Mazhar, et al., Inorg. Chem. 44, 9207 (2005). https://doi.org/10.1021/ic050564+

    Article  CAS  PubMed  Google Scholar 

  32. P. K. Larsen, R. Cuppens and G. A. C. M. Spierings, Ferroelectrics 128, 265 (1992). https://doi.org/10.1080/00150199208015102

    Article  CAS  Google Scholar 

  33. A. Ginsburg, D. A. Keller, H.-N. Barad, et al., Thin Solid Films 615, 261 (2016). https://doi.org/10.1016/j.tsf.2016.06.050

    Article  CAS  Google Scholar 

  34. M. A. E. C. U. Mordi, B. A. Taleatu, G. O. et al., J. Mater. Sci. Technol. 25, 85 (2009).

    Article  CAS  Google Scholar 

  35. A. A. Tahir, T. A. N. Peiris, and K. G. U. Wijayantha, Chem. Vap. Deposition 18, 107 (2012). https://doi.org/10.1002/cvde.201106974

    Article  CAS  Google Scholar 

  36. I. A. Bhatti, T. A. Nirmal Peiris, T. D. Smith, et al., Mater. Lett. 93, 333 (2013). https://doi.org/10.1016/j.matlet.2012.11.100

    Article  CAS  Google Scholar 

  37. M. R. Waller, T. K. Townsend, J. Zhao, et al., Chem. Mater. 24, 698 (2012). https://doi.org/10.1021/cm203293j

    Article  CAS  Google Scholar 

  38. K. G. U. Wijayantha, in Functional Materials for Sustainable Energy Applications, Ed. by J. A. Kilner, S. J. Skinner, S. J. C. Irvine, and P. P. Edwards (Woodhead Publ., 2012).

    Google Scholar 

  39. S. P. Lim, A. Pandikumar, H. N. Lim, et al., Sci. Rep. 5, 11922 (2015). https://doi.org/10.1038/srep11922

    Article  PubMed  PubMed Central  Google Scholar 

  40. S. P. Lim, A. Pandikumar, H. N. Lim, et al., Sol. Energy 125, 135 (2016). https://doi.org/10.1016/j.solener.2015.12.019

    Article  CAS  Google Scholar 

Download references

Funding

Authors acknowledge the Research funding institutes University of Malaya, Research University Grant-Faculty Program, Grant number RF014A-2018 and GPF019A-2019 and Higher Education Commission of Pakistan, Project no. 20-12197/NRPU/RGM/R&D/HEC/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Mansoor.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansoor, M.A., Hamzah, K., Naeem, R. et al. A Tri-Metallic (Mn–Co–Ti) Oxide Photoanode with Improved Photo-Conversion Efficiency. Russ. J. Inorg. Chem. 66, 806–813 (2021). https://doi.org/10.1134/S0036023621060139

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023621060139

Keywords:

Navigation