Skip to main content
Log in

The Effectiveness of Glycerol Solutions for Optical Clearing of the Intact Skin as Measured by Confocal Raman Microspectroscopy

  • BIOPHOTONICS
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The effect of glycerol solutions of different concentrations and exposure times on the optical clearing efficiency in intact pig skin has been studied in the analysis of Raman spectra recorded at different depths. It has been found that a solution of 80% glycerol and 20% dimethylsulfoxide penetrated through the stratum corneum during 45 min. The increase in optical clearing has been achieved by using mixtures of optical clearing agents with dimethylsulfoxide and distilled water. Thus, the greatest optical clearing efficiency was observed when using a mixture of 60% glycerol and 40% water for 45 min (an increase of 3.4 times at a depth of 80 µm). Thus, it has been shown that it is possible to control the skin optical parameters at a depth of about 80 µm using the method of confocal Raman microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. R. Schulz, K. Yamamoto, A. Klossek, F. Rancan, A. Vogt, C. Schutte, E. Ruhl, and R. R. Netz, Biophys. J. 117, 998 (2019).

    Article  ADS  Google Scholar 

  2. M. K. Matta, R. Zusterzeel, N. R. Pilli, V. Patel, D. A. Volpe, J. Florian, L. Oh, E. Bashaw, I. Zineh, C. Sanabria, S. Kemp, A. Godfrey, S. Adah, S. Coelho, J. Wang, L. A. Furlong, C. Ganley, T. Michele, and D. G. Strauss, J. Am. Med. Assoc. 321, 2082 (2019).

    Article  Google Scholar 

  3. C. Krafft and J. Popp, Anal. Bioanal. Chem. 407, 699 (2015).

    Article  Google Scholar 

  4. C. S. Choe, J. Lademann, and M. E. Darvin, Skin Pharmacol. Physiol. 28, 318 (2015).

    Article  Google Scholar 

  5. L. Zhang, T. Cambron, Y. Niu, Z. Xu, N. Su, H. Zheng, K. Wei, and P. Ray, J. Vis. Express., No. 151, e60186 (2019).

  6. S. Osseiran, Dela J. Cruz, S. Jeong, H. Wang, C. Fthenakis, and C. L. Evans, Biomed. Opt. Express 9, 6425 (2018).

    Article  Google Scholar 

  7. S. Bielfeldt, V. Schoder, U. Ely, A. van der Pol, J. de Sterke, and K. P. Wilhelm, Opt. Express 18, 15289 (2010).

    Article  Google Scholar 

  8. B. Sarri, X. Chen, R. Canonge, S. Gregoire, F. Formanek, J. B. Galey, A. Potter, T. Bornschlogl, and H. Rigneault, J. Control Release 308, 190 (2019).

    Article  Google Scholar 

  9. J. Ahn, K. H. Kim, K. Choe, J. H. Lim, S. K. Lee, Y. S. Kim, and P. Kim, Biomed. Opt. Express 9, 3974 (2018).

    Article  Google Scholar 

  10. S. Kikuchi, T. Aosaki, K. Bito, S. Naito, and Y. Katayama, Skin Res. Technol. 21, 76 (2015).

    Article  Google Scholar 

  11. M. Wolf, M. Halper, R. Pribyl, D. Baurecht, and C. Valenta, Int. J. Pharm. 519, 198 (2017).

    Article  Google Scholar 

  12. A. Ezerskaia, N. E. Uzunbajakava, G. J. Puppels, J. de Sterke, P. J. Caspers, H. P. Urbach, and B. Varghese, Biomed. Opt. Express 9, 2436 (2018).

    Article  Google Scholar 

  13. K. V. Berezin, K. N. Dvoretskii, M. L. Chernavina, V. V. Nechaev, A. M. Likhter, I. T. Shagautdinova, E. M. Antonova, and V. V. Tuchin, Opt. Spectrosc. 127, 352 (2019).

    Article  ADS  Google Scholar 

  14. M. E. Shvachkina, D. D. Yakovlev, E. N. Lazareva, A. B. Pravdin, and D. A. Yakovlev, Opt. Spectrosc. 127, 359 (2019).

    Article  ADS  Google Scholar 

  15. J. Gallwas, A. Stanchi, N. Ditsch, T. Schwarz, C. Dannecker, S. Muller, H. Stepp, and U. Mortensen, Lasers Med. Sci. 30, 517 (2015).

    Article  Google Scholar 

  16. N. Verdel, A. Marin, M. Milanic, and B. Majaron, Biomed. Opt. Express 10, 944 (2019).

    Article  Google Scholar 

  17. K. Shurrab, N. Kochaji, and W. Bachir, Pol. J. Med. Phys. Eng. 25, 141 (2019).

    Article  Google Scholar 

  18. Yu. V. Chursinova, D. A. Kulikov, D. A. Rogatkin, I. A. Raznitsyna, D. V. Mosal’skaya, M. A. Bobrov, E. N. Petritskaya, and A. V. Molochkov, Biomed. Photon. 8, 38 (2019).

    Article  Google Scholar 

  19. V. V. Dremin and A. V. Dunaev, J. Opt. Technol. 83, 43 (2016).

    Article  Google Scholar 

  20. K. I. Zaytsev, I. N. Dolganova, N. V. Chernomyrdin, G. M. Katyba, A. A. Gavdush, O. P. Cherkasova, G. A. Komandin, M. A. Shchedrina, A. N. Khodan, D. S. Ponomarev, I. V. Reshetov, V. E. Karasik, M. A. Skorobogatiy, V. N. Kurlov, and V. V. Tuchin, J. Opt. 22, 013001 (2020).

    ADS  Google Scholar 

  21. D. I. Ramos-Soto, A. K. Singh, E. Saucedo-Casas, E. Castro-Camus, and M. Alfaro-Gomez, Appl. Opt. 58, 6581 (2019).

    Article  ADS  Google Scholar 

  22. C. Merle, C. Laugel, P. Chaminade, and A. Baillet-Guffroy, J. Liq. Chromatogr. Relat. Technol. 33, 629 (2010).

    Article  Google Scholar 

  23. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnostics, 3rd ed. (SPIE Press, Bellingham, WA, 2015).

  24. B. E. Bouma and G. J. Tearney, Handbook of Optical Coherence Tomography (Marcel Dekker, New York, 2002).

    Google Scholar 

  25. A. Y. Sdobnov, M. E. Darvin, E. A. Genina, A. N. Bashkatov, J. Lademann, and V. V. Tuchin, Spectrochim. Acta, A 197, 216 (2018).

    Article  ADS  Google Scholar 

  26. I. Costantini, R. Cicchi, L. Silvestri, F. Vanzi, and F. S. Pavone, Biomed. Opt. Express 10, 5251 (2019).

    Article  Google Scholar 

  27. M. Inyushin, D. Meshalkina, L. Zueva, and A. Zayas-Santiago, Molecules 24, E2388 (2019).

  28. T. Son and B. Jung, Skin Res. Technol. 21, 327 (2015).

    Article  Google Scholar 

  29. K. Cu, R. Bansal, S. Mitragotri, and R. D. Fernandez, Ann. Biomed. Eng., 1573 (2019).

  30. D. S. Richardson and J. W. Lichtman, Cell 162, 246 (2015).

    Article  Google Scholar 

  31. P. Matryba, L. Kaczmarek, and J. Golab, Laser Photon. Rev. 13, 1800292 (2019).

    Article  ADS  Google Scholar 

  32. M. E. Darvin, J. Schleusener, F. Parenz, O. Seidel, C. Krafft, J. Popp, and J. Lademann, Analyst 143, 4990 (2018).

    Article  ADS  Google Scholar 

  33. M. H. Khan, B. Choi, S. M. Chess, K. Kelly, J. McCullough, and J. S. Nelson, Lasers Surg. Med. 34, 83 (2004).

    Article  Google Scholar 

  34. J. M. Hirshburg, K. M. Ravikumar, W. Hwang, and A. T. Yeh, J. Biomed. Opt. 15, 055002 (2010).

    Article  ADS  Google Scholar 

  35. N. J. Yang and M. J. Hinner, Methods Mol. Biol. 1266, 29 (2015).

    Article  Google Scholar 

  36. S. R. Utts, V. V. Tuchin, and E. M. Galkina, Vestn. Dermatol. Venerol., No. 4, 60 (2015).

  37. A. Y. Sdobnov, V. V. Tuchin, J. Lademann, and M. E. Darvin, J. Phys. D 50, 285401 (2017).

    Article  Google Scholar 

  38. A. Y. Sdobnov, M. E. Darvin, J. Schleusener, J. Lademann, and V. V. Tuchin, J. Biophoton., e201800283 (2019).

  39. K. P. Bohannon, R. W. Holz, and D. Axelrod, Microsc. Microanal. 23, 978 (2017).

    Article  ADS  Google Scholar 

  40. C. Choe, S. Choe, J. Schleusener, J. Lademann, and M. E. Darvin, J. Raman Spectrosc. 50, 945 (2019).

    Google Scholar 

  41. P. J. Caspers, G. W. Lucassen, E. A. Carter, H. A. Bruining, and G. J. Puppels, J. Invest. Dermatol. 116, 434 (2001).

    Article  Google Scholar 

  42. C. Choe, J. Schleusener, J. Lademann, and M. E. Dar-vin, J. Biophoton. 11, e201700355 (2018).

  43. P. J. Caspers, A. C. Williams, E. A. Carter, H. G. M. Ed-wards, B. W. Barry, H. A. Bruining, and G. J. Puppels, Pharmaceut. Res. 19, 1577 (2002).

    Article  Google Scholar 

  44. M. Zimmerley, R. A. McClure, B. Choi, and E. O. Potma, Appl. Opt. 48, D79 (2009).

    Article  ADS  Google Scholar 

  45. J. B. Segur and H. E. Oberstar, Ind. Eng. Chem. 43, 2117 (1951).

    Article  Google Scholar 

  46. L. Oliveira and V. V. Tuchin, The Optical Clearing Method: A New Tool for Clinical Practice and Biomedical Engineering (Springer Nature, Basel, Switzerland AG, 2019).

  47. J. W. Wiechers, J. C. Dederen, and A. V. Rawlings, in Skin Moisturization: Basic and Clinical Dermathology, Ed. by A. V. R. Rawlings and J. Leyden (Informa Health Care, Taylor and Francis Group, New York, 2009), p. 309.

    Google Scholar 

  48. V. D. Genin, D. K. Tuchina, A. J. Sadeq, E. A. Genina, V. V. Tuchin, and A. N. Bashkatov, J. Biomed. Photon. Eng. 2, 010303 (2016).

    Article  Google Scholar 

Download references

Funding

I. Yu. Yanina thanks DAAD and the Ministry of Education and Science of the Russian Federation for the financial support, the grant “Mikhail Lomonosov Program—Linie B, 2019 (57447934)” (art. no. 91728614) (internship at the Charité—Universitätsmedizin Berlin clinic). The work of V.V. Tuchin was supported by the RFBR grant no. 18-52-16025 NTSNIL_a (determining the optimal optical clearing agent).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Yu. Yanina.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

Permission to perform ex vivo measurements on pig skin was obtained from the Commission for Veterinary and Food Control of the district of Dahme–Spreewald, Ge-rmany.

CONFLICT OF INTEREST

The authors state that they have no conflict of interest.

Additional information

Translated by N. Petrov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yanina, I.Y., Schleusener, J., Lademann, J. et al. The Effectiveness of Glycerol Solutions for Optical Clearing of the Intact Skin as Measured by Confocal Raman Microspectroscopy. Opt. Spectrosc. 128, 759–765 (2020). https://doi.org/10.1134/S0030400X20060259

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X20060259

Keywords:

Navigation