Skip to main content
Log in

Analysis and applications of phase shifts for multichannel fiber Bragg grating

  • Nonlinear and Quantum Optics
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

A novel phase compensation method to improve comb filters performance by increasing DC refractive index of linearly chirped fiber Bragg grating (LCFBG) is proposed. Nonlinear chirp introduced by linearly chirped mask is discussed, and then DC phase shift compensate method is proposed. Two kinds of DC phase shift LCFBGs are analyzed, which shows a good agreement with traditional discrete phase shift method. A DC phase shift comb filter is realized with the help of a micrometer-precision translation stage, which shows the feasibility to introduce DC phase shift in LCFBG. A high flattened comb filter with precise 0.8 nm channel spacing is realized with the help of a micrometer precision translation stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. P. Li, M. Li, Y. L. Sheng, and J. E. Rothenberg, J. Lightwave Technol. 25(9), 2739 (2007).

    Article  ADS  Google Scholar 

  2. X. M. Liu, J. Lightwave Technol. 26(13), 1885 (2008).

    Article  ADS  Google Scholar 

  3. A. V. Buryak, K. Y. Kolossovski, and D. Y. Stepanov, J. Quantum Electron. 39(1), 91 (2003).

    Article  ADS  Google Scholar 

  4. Y. Nasu and S. Yamashita, J. Lightwave Technol. 23(4), 1808 (2005).

    Article  ADS  Google Scholar 

  5. J. Magne, J. Azana, S. LaRochelle, and L. R. Chen, IEEE Photon. Technol. Lett. 18(15), 1958 (2005).

    ADS  Google Scholar 

  6. X. F. Chen, C. C. Fan, Y. Luo, S. Z. Xie, and S. Hu, IEEE Photon. Technol. Lett. 12(11), 1501 (2005).

    Article  Google Scholar 

  7. X. F. Chen, J. Mao, X. H. Li, Z. Q. Lin, S. Z. Xie, and C.C. Fan, OFC, 2004, TuD2.

    Google Scholar 

  8. Y. T. Dai, X. F. Chen, X. M. Xu, C. C. Fan, and S. Z. Xie, IEEE Photon. Technol. Lett. 17(5), 1040 (2005).

    Article  ADS  Google Scholar 

  9. C. H. Wang, J. Azana, and L. R. Chen, IEEE Photon. Technol. Lett. 16(8), 1867 (2004).

    Article  ADS  Google Scholar 

  10. X. H. Zou, W. Pan, B. Luo, Z. M. Qin, M. Y. Wang, and W. L. Zhang, IEEE Photon. Technol. Lett. 18(12), 1371 (2006).

    Article  ADS  Google Scholar 

  11. A. Mohammad, D. Mansour, L. Sophie, and A. R. Leslie, J. Lightwave Technol. 27(23), 5276 (2009).

    Article  Google Scholar 

  12. X. X. Chen, L. L. Xian, K. Ogusu, and H. P. Li, IEEE Photon. Technol. Lett. 23(8), 498 (2011).

    Article  ADS  Google Scholar 

  13. X. X. Chen, Y. Painchaud, K. Ogusu, and H. P. Li, J. Lightwave Technol. 28(14), 2017 (2010).

    Article  ADS  Google Scholar 

  14. O. Durand, OFC, 2002, TUQ2.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guodan Sun.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, G., Wang, R., Pu, T. et al. Analysis and applications of phase shifts for multichannel fiber Bragg grating. Opt. Spectrosc. 115, 537–543 (2013). https://doi.org/10.1134/S0030400X13100172

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X13100172

Keywords

Navigation