Skip to main content
Log in

Human Antithrombin III Minigene with an Optimized Splicing Pattern

  • GENOMICS. TRANSCRIPTOMICS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Antithrombin III (AT3) belongs to the superfamily of serine protease inhibitors (serpins) and is a major anticoagulant in physiological conditions. Based on SERPINC1 gene, a minigene coding for human AT3, which is valuable for medicine and biotechnology, was constructed by minimizing the size of lengthy introns and preserving the splicing site-flanking sequences. An analysis of the minigene splicing pattern identified one correct AT3 transcript and two alternatively spliced transcripts, which formed either due to minigene exons 2 and 3 skipping or an aberrant exon insertion via splicing at cryptic splicing sites in intron 1 of the minigene. Site-directed mutagenesis of the cryptic splicing sites successfully optimized the splicing pattern of the AT3 minigene to completely prevent the generation of the alternative transcripts. The presence of the cryptic splicing sites in intron 1 of the minigene was confirmed with Human Splicing Finder v. 3.1 software, thus demonstrating that putative alternative splicing sites are possible to identify in minimized or hybrid introns of minigenes and to eliminate via mutagenesis before experimentally testing the minigene splicing patterns. The approach to the design of minigenes together with the bioinformatical analysis of the nucleotide sequences of minigene introns can be used to construct minigenes in order to generate transgenic animals producing economically valuable proteins in the milk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Luxembourg B., Delev D., Geisen C., Spannagl M., Krause M., Miesbach W., Heller C., Bergmann F., Schmeink U., Grossmann R., Lindhoff-Last E., Seifried E., Oldenburg J., Pavlova A. 2011. Molecular basis of antithrombin deficiency. Thromb. Haemost. 105, 635–646.

    Article  CAS  Google Scholar 

  2. Konkle B.A., Bauer K.A., Weinstein R., Greist A., Holmes H.E., Bonfiglio J. 2003. Use of recombinant human antithrombin in patients with congenital antithrombin deficiency undergoing surgical procedures. Transfusion. 43, 390–394.

    Article  CAS  PubMed  Google Scholar 

  3. Paidas M.J., Triche E.W., James A.H., DeSancho M., Robinson C., Lazarchick J., Ornaghi S., Frieling J. 2016. Recombinant human antithrombin in pregnant patients with hereditary antithrombin deficiency: Integrated analysis of clinical data. Am. J. Perinatol. 33, 343–349.

    PubMed  Google Scholar 

  4. Shepelev M.V., Kalinichenko S.V., Deykin A.V., Korobko I.V. 2018. Production of recombinant proteins in the milk of transgenic animals: Current state and prospects. Acta Naturae. 10, 40–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lavine G. 2009. FDA approves first biological product derived from transgenic animal. Am. J. Health Syst. Pharm. 66 (6), 518. https://doi.org/10.2146/news090023

    Article  PubMed  Google Scholar 

  6. Edmunds T., Van Patten S.M., Pollock J., Hanson E., Bernasconi R., Higgins E., Manavalan P., Ziomek C., Meade H., McPherson J.M., Cole E.S. 1998. Transgenically produced human antithrombin: Structural and functional comparison to human plasma-derived antithrombin. Blood. 91, 4561–4571.

    CAS  PubMed  Google Scholar 

  7. Palmiter R.D., Sandgren E.P., Avarbock M.R., Allen D.D., Brinster R.L. 1991. Heterologous introns can enhance expression of transgenes in mice. Proc. Natl. Acad. Sci. U. S. A. 88, 478–482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Choi T., Huang M., Gorman C., Jaenisch R. 1991. A generic intron increases gene expression in transgenic mice. Mol. Cell. Biol. 11, 3070–3074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Raker V.A., Mironov A.A., Gelfand M.S., Pervouchine D.D. 2009. Modulation of alternative splicing by long-range RNA structures in Drosophila. Nucleic Acids Res. 37, 4533–4544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gelfand M.S. 1989. Statistical analysis of mammalian pre-mRNA splicing sites. Nucleic Acids Res. 17, 6369–6382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Shepelev.

Additional information

Translated by T. Tkacheva

Abbreviations: AT3, antithrombin III; UTR, untranslated region.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shepelev, M.V., Saakian, E.K., Kalinichenko, S.V. et al. Human Antithrombin III Minigene with an Optimized Splicing Pattern. Mol Biol 53, 362–370 (2019). https://doi.org/10.1134/S0026893319030178

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893319030178

Keywords:

Navigation