Skip to main content
Log in

Expression of Stroma Components in the Lymph Nodes Affected by Prostate Cancer Metastases

  • MOLECULAR CELL BIOLOGY
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The architecture of stroma is crucial for normal lymph node functioning, as well as for the systemic and local immune response. Data from previous studies in metastatic lymph nodes suggest that changes in the composition of extracellular matrix proteins may occur, not only around the lesion site, but throughout the lymph node stroma. In the present study, the extracellular matrix status was compared between the affected and metastasis-free lymph nodes in prostate cancer. It was found that the presence of tumor cells was associated with significant changes in the expression of genes encoding extracellular matrix components, including α4, β1 and γ1 laminin chains, osteonectin, and collagen, as well as with decrease in the expression of lymphatic endothelial cell biomarkers LYVE1 and NRP2. This result suggests that the normal stromal architecture is significantly disrupted in metastatic lymph nodes and may indicate the development of immune tolerance to the tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Lambert A.W., Pattabiraman D.R., Weinberg R.A. 2017. Emerging biological principles of metastasis. Cell. 168, 670–691.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Nathanson S.D., Shah R., Rosso K. 2015. Sentinel lymph node metastases in cancer: Causes, detection and their role in disease progression. Semin. Cell Dev. Biol. 38, 106–116.

    Article  PubMed  CAS  Google Scholar 

  3. Karaman S., Detmar M. 2014. Mechanisms of lymphatic metastasis. J. Clin. Invest. 124, 922–928.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Sano D., Myers J.N. 2007. Metastasis of squamous cell carcinoma of the oral tongue. Cancer Metastasis Rev. 26, 645–662.

    Article  PubMed  CAS  Google Scholar 

  5. Fennewald S.M., Kantara C., Sastry S.K., Resto V.A. 2012. Laminin interactions with head and neck cancer cells under low fluid shear conditions lead to integrin activation and binding. J. Biol. Chem. 287, 21 058–21 066.

    Article  CAS  Google Scholar 

  6. Stacker S.A., Williams S.P., Karnezis T., Shayan R., Fox S.B., Achen M.G. 2014. Lymphangiogenesis and lymphatic vessel remodelling in cancer. Nat. Rev. Cancer. 14, 159–172.

    Article  PubMed  CAS  Google Scholar 

  7. Shen H., Wang X., Shao Z., Liu K., Xia X.Y., Zhang H.Z., Song K., Song Y., Shang Z.J. 2014. Alterations of high endothelial venules in primary and metastatic tumors are correlated with lymph node metastasis of oral and pharyngeal carcinoma. Cancer Biol. Ther. 15, 342–349.

    Article  PubMed  CAS  Google Scholar 

  8. Royston D., Jackson D.G. 2009. Mechanisms of lymphatic metastasis in human colorectal adenocarcinoma. J. Pathol. 217, 608–619.

    Article  PubMed  CAS  Google Scholar 

  9. Syn N., Wang L., Sethi G., Thiery J.-P., Goh B.-C. 2016. Exosome-mediated metastasis: From epithelial-mesenchymal transition to escape from immunosurveillance. Trends Pharmacol. Sci. 37, 606–17.

    Article  PubMed  CAS  Google Scholar 

  10. Peinado H., Zhang H., Matei I.R., Costa-Silva B., Hoshino A., Rodrigues G., Psaila B., Kaplan R.N., Bromberg J.F., Kang Y., Bissell M.J., Cox T.R., Giaccia A.J., Erler J.T., Hiratsuka S., et al. 2017. Pre-metastatic niches: Organ-specific homes for metastases. Nat. Rev. Cancer. 17, 302–317.

    Article  PubMed  CAS  Google Scholar 

  11. Chikina A.S., Alexandrova A.Y. 2014. The cellular mechanisms and regulation of metastasis formation. Mol. Biol. (Moscow). 48, 165–180.

    Article  CAS  Google Scholar 

  12. Kobayashi Y., Nakajima T., Saku T. 1995. Loss of basement membranes in the invading front of O-1N, hamster squamous cell carcinoma with high potential of lymph node metastasis: An immunohistochemical study for laminin and type IV collagen. Pathol. Int. 45, 327–334.

    Article  PubMed  CAS  Google Scholar 

  13. Burtin P., Chavanel G., Foidart J.M., Andre J. 1983. Alterations of the basement membrane and connective tissue antigens in human metastatic lymph nodes. Int. J. Cancer. 31, 719–726.

    Article  PubMed  CAS  Google Scholar 

  14. Kakkad S.M., Solaiyappan M., Argani P., Sukumar S., Jacobs L.K., Leibfritz D., Bhujwalla Z.M., Glunde K. 2012. Collagen I fiber density increases in lymph node positive breast cancers: Pilot study. J. Biomed. Opt. 17, 116 017.

    Article  Google Scholar 

  15. Rizwan A., Bulte C., Kalaichelvan A., Cheng M., Krishnamachary B., Bhujwalla Z.M., Jiang L., Glunde K. 2015. Metastatic breast cancer cells in lymph nodes increase nodal collagen density. Sci. Rep. 5, 10 002.

    Article  CAS  Google Scholar 

  16. Soudja S.M., Henri S., Mello M., Chasson L., Mas A., Wehbe M., Auphan-Anezin N., Leserman L., Van den Eynde B., Schmitt-Verhulst A.-M. 2011. Disrupted lymph node and splenic stroma in mice with induced inflammatory melanomas is associated with impaired recruitment of T and dendritic cells. PLoS One. 6, e22639.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Shkurnikov M.Y., Zotikov A.A., Belyakov M.M., Nushko K.M., Fomicheva K.A., Knyazev E.N., Sane-vich M.R., Ivanovich V.V., Alekseev B.Y. 2017. Application of loop-mediated isothermal amplification of DNA for diagnosis of prostate cancer micrometastases in the lymph nodes. Onkourologiya. 13, 63–66 (in Russ.).

  18. Oliveira-Ferrer L., Rößler K., Haustein V., Schröder C., Wicklein D., Maltseva D., Khaustova N., Samatov T., Tonevitsky A., Mahner S., Jänicke F., Schumacher U., Milde-Langosch K. 2014. c-FOS suppresses ovarian cancer progression by changing adhesion. Br. J. Cancer. 110, 753–763.

    Article  PubMed  CAS  Google Scholar 

  19. Krainova N.A., Khaustova N.A., Makeeva D.S., Fedotov N.N., Gudim E.A., Ryabenko E.A., Shkurnikov M.U., Galatenko V.V., Sakharov D.A., Maltseva D.V. 2013. Evaluation of potential reference genes for qRT-PCR data normalization in HeLa cells. Appl. Biochem. Microbiol. 49, 743–749.

    Article  CAS  Google Scholar 

  20. Sakharov D.A., Maltseva D. V., Riabenko E.A., Shkurnikov M.U., Northoff H., Tonevitsky A.G., Grigoriev A.I. 2012. Passing the anaerobic threshold is associated with substantial changes in the gene expression profile in white blood cells. Eur. J. Appl. Physiol. 112, 963–972.

    Article  PubMed  CAS  Google Scholar 

  21. Maltseva D. V., Krainova N.A., Khaustova N.A., Nikulin S. V., Tonevitskaya S.A., Poloznikov A.A. 2017. Biodistribution of viscumin after subcutaneous injection to mice and in vitro modeling of endoplasmic reticulum stress. Bull. Exp. Biol. Med. 163, 451–455.

    Article  PubMed  CAS  Google Scholar 

  22. Maltseva D.V., Khaustova N.A., Fedotov N.N., Matveeva E.O., Lebedev A.E., Shkurnikov M.U., Galatenko V.V., Schumacher U., Tonevitsky A.G. 2013. High-throughput identification of reference genes for research and clinical RT-qPCR analysis of breast cancer samples. J. Clin. Bioinform. 3, 13. doi 10.1186/2043-9113-3-13

    Article  CAS  Google Scholar 

  23. Kubista M., Andrade J.M., Bengtsson M., Forootan A., Jonák J., Lind K., Sindelka R., Sjöback R., Sjögreen B., Strömbom L., Ståhlberg A., Zoric N. 2006. The real-time polymerase chain reaction. Mol. Aspects Med. 27, 95–125.

    Article  PubMed  CAS  Google Scholar 

  24. Bollyky P.L., Wu R.P., Falk B.A., Lord J.D., Long S.A., Preisinger A., Teng B., Holt G.E., Standifer N.E., Braun K.R., Xie C.F., Samuels P.L., Vernon R.B., Gebe J.A., Wight T.N., Nepom G.T. 2011. ECM components guide IL-10 producing regulatory T-cell (TR1. induction from effector memory T-cell precursors. Proc. Natl. Acad. Sci. U. S. A. 108, 7938–7943.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Groom J.R., Richmond J., Murooka T.T., Sorensen E.W., Sung J.H., Bankert K., von Andrian U.H., Moon J.J., Mempel T.R., Luster A.D. 2012. CXCR3 chemokine receptor-ligand interactions in the lymph node optimize CD4+ T helper 1 cell differentiation. Immunity. 37, 1091–1103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Girard J.-P., Moussion C., Förster R. 2012. HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes. Nat. Rev. Immunol. 12, 762–773.

    Article  PubMed  CAS  Google Scholar 

  27. Gasteiger G., Ataide M., Kastenmüller W. 2016. Lymph node: An organ for T-cell activation and pathogen defense. Immunol. Rev. 271, 200–220.

    Article  PubMed  CAS  Google Scholar 

  28. Willard-Mack C.L. 2006. Normal structure, function, and histology of lymph nodes. Toxicol. Pathol. 34, 409–424.

    Article  PubMed  Google Scholar 

  29. Stein J.V., Gonzalez S.F. 2017. Dynamic intravital imaging of cell-cell interactions in the lymph node. J. Allergy Clin. Immunol. 139, 12–20.

    Article  PubMed  Google Scholar 

  30. Gorfu G., Virtanen I., Hukkanen M., Lehto V.-P., Rousselle P., Kenne E., Lindbom L., Kramer R., Tryggvason K., Patarroyo M. 2008. Laminin isoforms of lymph nodes and predominant role of 5-laminin(s) in adhesion and migration of blood lymphocytes. J. Leukoc. Biol. 84, 701–712.

    Article  PubMed  CAS  Google Scholar 

  31. Sorokin L. 2010. The impact of the extracellular matrix on inflammation. Nat. Rev. Immunol. 10, 712–723.

    Article  PubMed  CAS  Google Scholar 

  32. Geberhiwot T., Assefa D., Kortesmaa J., Ingerpuu S., Pedraza C., Wondimu Z., Charo J., Kiessling R., Virtanen I., Tryggvason K., Patarroyo M. 2001. Laminin-8 (alpha4beta1gamma1) is synthesized by lymphoid cells, promotes lymphocyte migration and costimulates T cell proliferation. J. Cell Sci. 114, 423–433.

    PubMed  CAS  Google Scholar 

  33. Wondimu Z., Geberhiwot T., Ingerpuu S., Juronen E., Xie X., Lindbom L., Doi M., Kortesmaa J., Thyboll J., Tryggvason K., Fadeel B., Patarroyo M. 2004. An endothelial laminin isoform, laminin 8 (α4β1γ1), is secreted by blood neutrophils, promotes neutrophil migration and extravasation, and protects neutrophils from apoptosis. Blood. 104, 1859–1866.

    Article  PubMed  CAS  Google Scholar 

  34. Song J., Zhang X., Buscher K., Wang Y., Wang H., Di Russo J., Li L., Lütke-Enking S., Zarbock A., Stadtmann A., Striewski P., Wirth B., Kuzmanov I., Wiendl H., Schulte D., et al. 2017. Endothelial basement membrane laminin 511 contributes to endothelial junctional tightness and thereby inhibits leukocyte transmigration. Cell Rep. 18, 1256–1269.

    Article  PubMed  CAS  Google Scholar 

  35. Warren K.J., Iwami D., Harris D.G., Bromberg J.S., Burrell B.E. 2014. Laminins affect T cell trafficking and allograft fate. J. Clin. Invest. 124, 2204–2218.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Malhotra D., Fletcher A.L., Astarita J., Lukacs-Kornek V., Tayalia P., Gonzalez S.F., Elpek K.G., Chang S.K., Knoblich K., Hemler M.E., Brenner M.B., Carroll M.C., Mooney D.J., Turley S.J., Zhou Y., et al. 2012. Transcriptional profiling of stroma from inflamed and resting lymph nodes defines immunological hallmarks. Nat. Immunol. 13, 499–510.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Yeo K.P., Angeli V. 2017. Bidirectional crosstalk between lymphatic endothelial cell and T cell and its implications in tumor immunity. Front. Immunol. 8, 1–11.

    Article  CAS  Google Scholar 

  38. Ulvmar M.H., Mäkinen T. 2016. Heterogeneity in the lymphatic vascular system and its origin. Cardiovasc. Res. 111, 310–321.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Garrafa E., De Francesco M., Solaini L., Giulini S.M., Bonfanti C., Ministrini S., Caimi L., Tiberio G.A.M. 2015. Lymphatic endothelial cells derived from metastatic and non-metastatic lymph nodes of human colorectal cancer reveal phenotypic differences in culture. Lymphology. 48, 6–14.

    PubMed  CAS  Google Scholar 

  40. Lund A.W., Duraes F. V, Hirosue S., Raghavan V.R., Nembrini C., Thomas S.N., Issa A., Hugues S., Swartz M.A. 2012. VEGF-C promotes immune tolerance in B16 melanomas and cross-presentation of tumor antigen by lymph node lymphatics. Cell Rep. 1, 191–199.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation (Agreements nos. 16-15-00290 and 17-14-01338). Analysis of laminin gene expression by real-time PCR was financed via Agreement no. 17-14-01338; the other experiments were supported via Agreement no. 16-15-00290.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Maltseva.

Additional information

Translated by D. Timchenko

1Abbreviations: ECM, extracellular matrix; qPCR, quantitative real-time PCR; DNCs, gp38CD31 stroma cells; FRCs, fibroblast-like reticular cells; LECs, lymphatic endothelial cells.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shkurnikov, M.Y., Maltseva, D.V., Knyazev, E.N. et al. Expression of Stroma Components in the Lymph Nodes Affected by Prostate Cancer Metastases. Mol Biol 52, 701–706 (2018). https://doi.org/10.1134/S0026893318050126

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893318050126

Keywords:

Navigation