Skip to main content
Log in

Molecular Mechanisms of Drug Tolerance in Mycobacterium tuberculosis

  • Reviews
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

A dramatic increase in drug-resistant forms of tuberculosis (TB) stimulates a search for novel anti- TB drugs and studies of the drug resistance acquisition. One of the possible causes is a phenotypic resistance or drug tolerance which is not associated with genomic changes. The majority of anti-TB drugs eliminate 99% of MTB cells in 3–5 days, but the remaining subpopulation becomes unsusceptible to treatment and capable for long-term persistence with ability to resuscitate once the external adverse factor is removed. This evasion of the stress factor facilitates selection of resistant forms, thus warranting long-term treatment with at least four antibacterial drugs in TB. The review considers the main mechanisms of bacterial tolerance that are due to alterations in the cell wall, activation of efflux pumps, induction of transcriptional regulons, changes in metabolic flows, and modification of molecular machineries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Koul A., Arnoult E., Lounis N., et al. 2011. The challenge of new drug discovery for tuberculosis. Nature. 469, 483–490.

    Article  PubMed  CAS  Google Scholar 

  2. Hobby G., Meyer K., Chaffee E. 1942. Observations on the mechanism of action of penicillin. Exp. Biol. Med. 50, 281–285.

    Article  CAS  Google Scholar 

  3. Mccune R., Tompsett R. 1956. Fate of Mycobacterium tuberculosis in mouse tissues as determined by the microbial enumeration technique: 1. The persistence of drug-susceptible tubercle bacilli in the tissues despite prolonged antimicrobial therapy. J. Exp. Med. 104, 737–762.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Brock A., Chang H., Huang S. 2009. Non-genetic heterogeneity—a mutation-independent driving force for the somatic evolution of tumours. Nat. Rev. Genet. 10, 336–342.

    Article  PubMed  CAS  Google Scholar 

  5. Wu M., Tan J., Dick T. 2015. Eagle effect in nonreplicating persister mycobacteria. Antimicrob. Agents Chemother. 59, 7786–7789.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Eagle H., Musselman A. 1948. The rate of bactericidal action of penicillin in vitro as a function of its concentration, and its paradoxically reduced activity at high concentrations against certain organisms. J. Exp. Med. 88, 99–131.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Drlica K., Xu C., Wang J., et al. 1996. Fluoroquinolone action in mycobacteria: Similarity with effects in Escherichia coli and detection by cell lysate viscosity. Antimicrob. Agents Chemother. 40, 1594–1599.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Moyed H., Bertrand K. 1983. hipA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. J. Bacteriol. 155, 768–775.

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Balaban N. 2004. Bacterial persistence as a phenotypic switch. Science. 305, 1622–1625.

    Article  PubMed  CAS  Google Scholar 

  10. Jain P., Weinrick B., Kalivoda E., et al. 2016. Dualreporter mycobacteriophages (Φ2DRMS) reveal preexisting Mycobacterium tuberculosis persistent cells in human sputum. MBio. 7, e01023-16.

    Article  Google Scholar 

  11. Schlafer S., Meyer R. 2017. Confocal microscopy imaging of the biofilm matrix. J. Microbiol. Methods. 138, 50–59.

    Article  PubMed  Google Scholar 

  12. Fridman O., Goldberg A., Ronin I., et al. 2014. Optimization of lag time underlies antibiotic tolerance in evolved bacterial populations. Nature. 513, 418–421.

    Article  PubMed  CAS  Google Scholar 

  13. Levin-Reisman I., Ronin I., Gefen O., et al. 2017. Antibiotic tolerance facilitates the evolution of resistance. Science. 355, 826–830.

    Article  PubMed  CAS  Google Scholar 

  14. Brauner A., Fridman O., Gefen O., et al. 2016. Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat. Rev. Microbiol. 14, 320–330.

    Article  PubMed  CAS  Google Scholar 

  15. Maisonneuve E., Shakespeare L., Jorgensen M., et al. 2011. Bacterial persistence by RNA endonucleases. Proc. Natl. Acad. Sci. U. S. A. 108, 13206–13211.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dhar N., McKinney J. 2010. Mycobacterium tuberculosis persistence mutants identified by screening in isoniazid-treated mice. Proc. Natl. Acad. Sci. U. S. A. 107, 12275–12280.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Franzblau S., Degroote M., Cho S., et al. 2012. Comprehensive analysis of methods used for the evaluation of compounds against Mycobacterium tuberculosis. Tuberculosis. 92, 453–488.

    Article  PubMed  CAS  Google Scholar 

  18. Pankey G., Sabath L. 2004. Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-positive bacterial infections. Clin. Infect. Dis. 38, 864–870.

    Article  PubMed  CAS  Google Scholar 

  19. Mueller M., De La Pena A., Derendorf H. 2004. Issues in pharmacokinetics and pharmacodynamics of anti-infective agents: Kill curves versus MIC. Antimicrob. Agents Chemother. 48, 369–377.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Brauner A., Shoresh N., Fridman O., et al. 2017. An experimental framework for quantifying bacterial tolerance. Biophys. J. 112, 2664–2671.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Parish T., Roberts D. 2015. Mycobacteria Protocols, 3rd ed. New York: Humana Press.

    Book  Google Scholar 

  22. Saito K., Warrier T., Somersan-Karakaya S., et al. 2017. Rifamycin action on RNA polymerase in antibiotic-tolerant Mycobacterium tuberculosis results in differentially detectable populations. Proc. Natl. Acad. Sci. U. S. A. 114, e4832–E4840.

    Article  CAS  Google Scholar 

  23. Liu Z., Gao Y., Yang H., et al. 2016. Impact of hypoxia on drug resistance and growth characteristics of Mycobacterium tuberculosis clinical isolates. PLoS One. 11, e0166052.

    Google Scholar 

  24. Veatch A., Niu T., Caskey J., et al. 2016. Sequencing-relative to hybridization-based transcriptomics approaches better define Mycobacterium tuberculosis stress-response regulons. Tuberculosis. 101, S9–S17.

    Article  CAS  Google Scholar 

  25. Park H., Guinn K., Harrell M., et al. 2003. Rv3133c/dosR is a transcription factor that mediates the hypoxic response of Mycobacterium tuberculosis. Mol. Microbiol. 48, 833–843.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Rustad T., Harrell M., Liao R., et al. 2008. The enduring hypoxic response of Mycobacterium tuberculosis. PLoS One. 3, e1502.

    Article  CAS  Google Scholar 

  27. Cortes T., Schubert O., Banaei-Esfahani A., et al. 2017. Delayed effects of transcriptional responses in Mycobacterium tuberculosis exposed to nitric oxide suggest other mechanisms involved in survival. Sci. Rep. 7, 8208.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Gengenbacher M., Kaufmann S. 2012. Mycobacterium tuberculosis: Success through dormancy. FEMS Microbiol. Rev. 36, 514–532.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Garton N., Waddell S., Sherratt A., et al. 2008. Cytological and transcript analyses reveal fat and lazy persister-like bacilli in tuberculous sputum. PLoS Med. 5, 0634–0645.

    Article  CAS  Google Scholar 

  30. Honeyborne I., McHugh T., Kuittinen I., et al. 2016. Profiling persistent tubercule bacilli from patient sputa during therapy predicts early drug efficacy. BMC Med. 14, 68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Walter N., Dolganov G., Garcia B., et al. 2015. Transcriptional adaptation of drug-tolerant Mycobacterium tuberculosis during treatment of human tuberculosis. J. Infect. Dis. 212, 990–998.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Rohde K., Yates R., Purdy G., et al. 2007. Mycobacterium tuberculosis and the environment within the phagosome. Immunol. Rev. 219, 37–54.

    Article  PubMed  CAS  Google Scholar 

  33. Via L., Lin P., Ray S., et al. 2008. Tuberculous granulomas are hypoxic in guinea pigs, rabbits, and nonhuman primates. Infect. Immun. 76, 2333–2340.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. De Voss J., Rutter K., Schroeder B., et al. 2000. The salicylate-derived mycobactin siderophores of Mycobacterium tuberculosis are essential for growth in macrophages. Proc. Natl. Acad. Sci. U. S. A. 97, 1252–1257.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Rifat D., Bishai W., Karakousis P. 2009. Phosphate depletion: A novel trigger for Mycobacterium tuberculosis persistence. J. Infect. Dis. 200, 1126–1135.

    Article  PubMed  CAS  Google Scholar 

  36. Mouton J., Helaine S., Holden D., et al. 2016. Elucidating population-wide mycobacterial replication dynamics at the single-cell level. Microbiology. 162, 966–978.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Mukamolova G., Turapov O., Malkin J., et al. 2010. Resuscitation-promoting factors reveal an occult population of tubercle bacilli in sputum. Am. J. Respir. Crit. Care Med. 181, 174–180.

    Article  PubMed  CAS  Google Scholar 

  38. Sun Z., Zhang Y. 1999. Spent culture supernatant of Mycobacterium tuberculosis H37Ra improves viability of aged cultures of this strain and allows small inocula to initiate growth. J. Bacteriol. 181, 7626–7628.

    PubMed  PubMed Central  CAS  Google Scholar 

  39. Kondratieva T., Azhikina T., Nikonenko B., et al. 2014. Latent tuberculosis infection: What we know about its genetic control? Tuberculosis. 94, 462–468.

    Article  PubMed  CAS  Google Scholar 

  40. Peddireddy V., Doddam S., Ahmed N. 2017. Mycobacterial dormancy systems and host responses in tuberculosis. Front. Immunol. 8, 84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Elowitz M. 2002. Stochastic gene expression in a single cell. Science. 297, 1183–1186.

    Article  PubMed  CAS  Google Scholar 

  42. Eldar A., Elowitz M. 2010. Functional roles for noise in genetic circuits. Nature. 467, 167–173.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Raffetseder J., Pienaar E., Blomgran R., et al. 2014. Replication rates of Mycobacterium tuberculosis in human macrophages do not correlate with mycobacterial antibiotic susceptibility. PLoS One. 9, e112426.

    Article  CAS  Google Scholar 

  44. Wakamoto Y., Dhar N., Chait R., et al. 2013. Dynamic persistence of antibiotic-stressed mycobacteria. Science. 339, 91–95.

    Article  PubMed  CAS  Google Scholar 

  45. Ling J., O’Donoghue P., Soll D. 2015. Genetic code flexibility in microorganisms: Novel mechanisms and impact on physiology. Nat. Rev. Microbiol. 13, 707–721.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Javid B., Sorrentino F., Toosky M., et al. 2014. Mycobacterial mistranslation is necessary and sufficient for rifampicin phenotypic resistance. Proc. Natl. Acad. Sci. U. S. A. 111, 1132–1137.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Cadena A., Fortune S., Flynn J. 2017. Heterogeneity in tuberculosis. Nat. Rev. Immunol. 17, 691–702.

    Article  PubMed  CAS  Google Scholar 

  48. Gill W., Harik N., Whiddon M., et al. 2009. A replication clock for Mycobacterium tuberculosis. Nat. Med. 15, 211–214.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Baek S., Li A., Sassetti C. 2011. Metabolic regulation of mycobacterial growth and antibiotic sensitivity. PLoS Biol. 9, e1001065.

    Article  CAS  Google Scholar 

  50. Shi L., Sohaskey C., Pfeiffer C., et al. 2010. Carbon flux rerouting during Mycobacterium tuberculosis growth arrest. Mol. Microbiol. 78, 1199–1215.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Lovewell R., Sassetti C., VanderVen B. 2016. Chewing the fat: Lipid metabolism and homeostasis during M. tuberculosis infection. Curr. Opin. Microbiol. 29, 30–36.

    Article  PubMed  CAS  Google Scholar 

  52. Barisch C., Soldati T. 2017. Breaking fat! How mycobacteria and other intracellular pathogens manipulate host lipid droplets. Biochimie. 141, 54–56.

    Article  PubMed  CAS  Google Scholar 

  53. Waltermann M., Steinbuchel A. 2005. Neutral lipid bodies in prokaryotes: Recent insights into structure, formation, and relationship to eukaryotic lipid depots. J. Bacteriol. 187, 3607–3619.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Kim M., Wainwright H., Locketz M., et al. 2010. Caseation of human tuberculosis granulomas correlates with elevated host lipid metabolism. EMBO Mol. Med. 2, 258–274.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Hammond R., Baron V., Oravcova K., et al. 2015. Phenotypic resistance in mycobacteria: Is it because I am old or fat that I resist you? J. Antimicrob. Chemother. 70, 2823–2827.

    Article  PubMed  CAS  Google Scholar 

  56. Deb C., Lee C., Dubey V., et al. 2009. A novel in vitro multiple-stress dormancy model for Mycobacterium tuberculosis generates a lipid-loaded, drug-tolerant, dormant pathogen. PLoS One. 4, e6077.

    Article  CAS  Google Scholar 

  57. Pandey A., Sassetti C. 2008. Mycobacterial persistence requires the utilization of host cholesterol. Proc. Natl. Acad. Sci. U. S. A. 105, 4376–4380.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Nazarova E., Montague C., La T., et al. 2017. Rv3723/LucA coordinates fatty acid and cholesterol uptake in Mycobacterium tuberculosis. eLife. 6, e26969.

    Article  Google Scholar 

  59. Rittershaus E., Baek S., Sassetti C. 2013. The normalcy of dormancy: Common themes in microbial quiescence. Cell Host Microbe. 13, 643–651.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Hartman T., Wang Z., Jansen R., et al. 2017. Metabolic perspectives on persistence. Microbiol. Spectr. 5, TBTB2-0026-2016.

    Google Scholar 

  61. Nandakumar M., Nathan C., Rhee K. 2014. Isocitrate lyase mediates broad antibiotic tolerance in Mycobacterium tuberculosis. Nat. Commun. 5, 4306.

    Article  PubMed  CAS  Google Scholar 

  62. Munoz-Elias E., Upton A., Cherian J., et al. 2006. Role of the methylcitrate cycle in Mycobacterium tuberculosis metabolism, intracellular growth, and virulence. Mol. Microbiol. 60, 1109–1122.

    Article  PubMed  CAS  Google Scholar 

  63. Singh K., Sharma R., Keshari D., et al. 2017. Downregulation of malate synthase in Mycobacterium tuberculosis H37Ra leads to reduced stress tolerance, persistence and survival in macrophages. Tuberculosis. 106, 73–81.

    Article  PubMed  CAS  Google Scholar 

  64. Boshoff H., Barry C. 2005. Tuberculosis: Metabolism and respiration in the absence of growth. Nat. Rev. Microbiol. 3, 70–80.

    Article  PubMed  CAS  Google Scholar 

  65. Watanabe S., Zimmermann M., Goodwin M., et al. 2011. Fumarate reductase activity maintains an energized membrane in anaerobic Mycobacterium tuberculosis. PLoS Pathog. 7, e1002287.

    Article  CAS  Google Scholar 

  66. Eoh H., Rhee K. 2013. Multifunctional essentiality of succinate metabolism in adaptation to hypoxia in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. U. S. A. 110, 6554–6559.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Kurthkoti K., Amin H., Marakalala M., et al. 2017. The capacity of Mycobacterium tuberculosis to survive iron starvation might enable it to persist in irondeprived microenvironments of human granulomas. mBio. 8, e01092-17.

    Article  Google Scholar 

  68. Velayati A., Farnia P. 2017. Atlas of Mycobacterium tuberculosis, 1st ed. New York: Academic.

    Google Scholar 

  69. Chuang Y., Belchis D., Karakousis P. 2013. The polyphosphate kinase gene ppk2 is required for Mycobacterium tuberculosis inorganic polyphosphate regulation and virulence. mBio. 4, e00039-13.

    Article  CAS  Google Scholar 

  70. Maisonneuve E., Castro-Camargo M., Gerdes K. 2013. (p)ppGpp controls bacterial persistence by stochastic induction of toxin-antitoxin activity. Cell. 154, 1140–1150.

    Article  PubMed  CAS  Google Scholar 

  71. Maisonneuve E., Gerdes K. 2014. Molecular mechanisms underlying bacterial persisters. Cell. 157, 539–548.

    Article  PubMed  CAS  Google Scholar 

  72. Chuang Y., Dutta N., Hung C., et al. 2016. Stringent response factors PPX1 and PPK2 play an important role in Mycobacterium tuberculosis metabolism, biofilm formation, and sensitivity to isoniazid in vivo. Antimicrob. Agents. Chemother. 60, 6460–6470.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Fux C., Costerton J., Stewart P., et al. 2005. Survival strategies of infectious biofilms. Trends Microbiol. 13, 34–40.

    Article  PubMed  CAS  Google Scholar 

  74. Ojha A., Anand M., Bhatt A., et al. 2005. GroEL1: A dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria. Cell. 123, 861–873.

    Article  PubMed  CAS  Google Scholar 

  75. Ojha A., Baughn A., Sambandan D., et al. 2008. Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug-tolerant bacteria. Mol. Microbiol. 69, 164–174.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Pang J., Layre E., Sweet L., et al. 2012. The polyketide pks1 contributes to biofilm formation in Mycobacterium tuberculosis. J. Bacteriol. 194, 715–721.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Flemming H., Wingender J. 2010. The biofilm matrix. Nat. Rev. Microbiol. 8, 623–633.

    Article  PubMed  CAS  Google Scholar 

  78. Trivedi A., Mavi P., Bhatt D., et al. 2016. Thiol reductive stress induces cellulose-anchored biofilm formation in Mycobacterium tuberculosis. Nat. Commun. 7, 11392.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Sharma I., Petchiappan A., Chatterji D. 2014. Quorum sensing and biofilm formation in mycobacteria: Role of c-di-GMP and methods to study this second messenger. IUBMB Life. 66, 823–834.

    Article  PubMed  CAS  Google Scholar 

  80. Jackson M. 2014). The mycobacterial cell envelopelipids. Cold Spring Harb. Perspect. Med. 4, a021105.

    Google Scholar 

  81. Lavollay M., Arthur M., Fourgeaud M., et al. 2008. The peptidoglycan of stationary-phase Mycobacterium tuberculosis predominantly contains cross-links generated by L,D-transpeptidation. J. Bacteriol. 190, 4360–4366.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Gupta R., Lavollay M., Mainardi J.-L., et al. 2010. The Mycobacterium tuberculosis protein LdtMt2 is a nonclassical transpeptidase required for virulence and resistance to amoxicillin. Nat. Med. 16, 466–469.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Wayne L., Hayes L. 1996. An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect. Immun. 64, 2062–2069.

    PubMed  PubMed Central  CAS  Google Scholar 

  84. Sarathy J., Dartois V., Dick T., et al. 2013. Reduced drug uptake in phenotypically resistant nutrientstarved nonreplicating Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 57, 1648–1653.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Ren Q., Kang K., Paulsen I. 2004. TransportDB: A relational database of cellular membrane transport systems. Nucleic Acids Res. 32, D284–D288.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Li G., Zhang J., Guo Q., et al. 2015. Efflux pump gene expression in multidrug-resistant Mycobacterium tuberculosis clinical isolates. PLoS One. 10, e0119013.

    Google Scholar 

  87. Te Brake L., de Knegt G., de Steenwinkel J., et al. 2018. The role of efflux pumps in tuberculosis treatment and their promise as a target in drug development: Unraveling the black box. Annu. Rev. Pharmacol. Toxicol. doi annurev-pharmtox-010617-052438

    Google Scholar 

  88. Rengarajan J., Bloom B., Rubin E. 2005. Genomewide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages. Proc. Natl. Acad. Sci. U. S. A. 102, 8327–8332.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Adams K., Takaki K., Connolly L., et al. 2011. Drug tolerance in replicating mycobacteria mediated by a macrophage-induced efflux mechanism. Cell. 145, 39–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Zahner D., Zhou X., Chancey S., et al. 2010. Human antimicrobial peptide LL-37 induces MefE/Melmediated macrolide resistance in Streptococcus pneumoniae. Antimicrob. Agents Chemother. 54, 3516–3519.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Buriankova K., Doucet-Populaire F., Dorson O., et al. 2004. Molecular basis of intrinsic macrolide resistance in the Mycobacterium tuberculosis complex. Antimicrob. Agents Chemother. 48, 143–150.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Morris R., Nguyen L., Gatfield J., et al. 2005. Ancestral antibiotic resistance in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. U. S. A. 102, 12200–12205.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Wei J., Dahl J., Moulder J., et al. 2000. Identification of a Mycobacterium tuberculosis gene that enhances mycobacterial survival in macrophages. J. Bacteriol. 182, 377–384.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Chen W., Biswas T., Porter V., et al. 2011. Unusual regioversatility of acetyltransferase Eis, a cause of drug resistance in XDR-TB. Proc. Natl. Acad. Sci. U. S. A. 108, 9804–9808.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Cole S., Brosch R., Parkhill J., et al. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 393, 537–544.

    Article  PubMed  CAS  Google Scholar 

  96. Sachdeva P., Misra R., Tyagi A., et al. 2010. The sigma factors of Mycobacterium tuberculosis: Regulation of the regulators. FEBS J. 277, 605–626.

    Article  PubMed  CAS  Google Scholar 

  97. Flentie K., Garner A., Stallings C. 2016. Mycobacterium tuberculosis transcription machinery: Ready to respond to host attacks. J. Bacteriol. 198, 1360–1373.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Michele T., Ko C., Bishai W. 1999. Exposure to antibiotics induces expression of the Mycobacterium tuberculosis sigF gene: Implications for chemotherapy against mycobacterial persistors. Antimicrob. Agents Chemother. 43, 218–225.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Geiman D., Kaushal D., Ko C., et al. 2004. Attenuation of late-stage disease in mice infected by the Mycobacterium tuberculosis mutant lacking the SigF alternate sigma factor and identification of SigF-dependent genes by microarray analysis. Infect. Immun. 72, 1733–1745.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Dey A., Verma A., Chatterji D. 2010. Role of an RNA polymerase interacting protein, MsRbpA, from Mycobacterium smegmatis in phenotypic tolerance to rifampicin. Microbiology. 156, 873–883.

    Article  PubMed  CAS  Google Scholar 

  101. Flatten I., Morigen, Skarstad K. 2009. DnaA protein interacts with RNA polymerase and partially protects it from the effect of rifampicin. Mol. Microbiol. 71, 1018–1030.

    Article  PubMed  CAS  Google Scholar 

  102. Newell K., Thomas D., Brekasis D., et al. 2006. The RNA polymerase-binding protein RbpA confers basal levels of rifampicin resistance on Streptomyces coelicolor. Mol. Microbiol. 60, 687–696.

    Article  PubMed  CAS  Google Scholar 

  103. Dey A., Adithi V., Chatterji D. 2012. Co-evolution of RNA polymerase with RbpA in the phylum Actinobacteria. Appl. Transl. Genomics. 1, 9–20.

    Article  CAS  Google Scholar 

  104. Hu Y., Morichaud Z., Perumal A., et al. 2014. Mycobacterium RbpA cooperates with the stress-response σb subunit of RNA polymerase in promoter DNA unwinding. Nucleic Acids Res. 42, 10399–10408.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Hu Y., Wang Z., Feng L., et al. 2016. σE-dependent activation of RbpA controls transcription of the furAkatG operon in response to oxidative stress in mycobacteria. Mol. Microbiol. 102, 107–120.

    Article  PubMed  CAS  Google Scholar 

  106. Albrethsen J., Agner J., Piersma S., et al. 2013. Proteomic profiling of Mycobacterium tuberculosis identifies nutrient-starvation-responsive toxin–antitoxin systems. Mol. Cell Proteomics. 12, 1180–1191.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Van Melderen L. 2010. Toxin-antitoxin systems: Why so many, what for? Curr. Opin. Microbiol. 13, 781–785.

    Article  PubMed  CAS  Google Scholar 

  108. Schifano J., Cruz J., Vvedenskaya I., et al. 2016. tRNA is a new target for cleavage by a MazF toxin. Nucleic Acids Res. 44, 1256–1270.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Cruz J., Sharp J., Hoffer E., et al. 2015. Growth-regulating Mycobacterium tuberculosis VapC-mt4 toxin is an isoacceptor-specific tRNase. Nat. Commun. 6, 7480.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Ramage H., Connolly L., Cox J. 2009. Comprehensive functional analysis of Mycobacterium tuberculosis toxin-antitoxin systems: Implications for pathogenesis, stress responses, and evolution. PLoS Genet. 5, e1000767.

    Article  CAS  Google Scholar 

  111. Gupta A., Venkataraman B., Vasudevan M., et al. 2017. Co-expression network analysis of toxin-antitoxin loci in Mycobacterium tuberculosis reveals key modulators of cellular stress. Sci. Rep. 7, 5868.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Arcus V., Rainey P., Turner S. 2005. The PIN-domain toxin-antitoxin array in mycobacteria. Trends Microbiol. 13, 360-365.

    Article  PubMed  CAS  Google Scholar 

  113. Winther K., Brodersen D., Brown A., et al. 2013. VapC20 of Mycobacterium tuberculosis cleaves the sarcin–ricin loop of 23S rRNA. Nat. Commun. 4, 2796.

    Article  PubMed  CAS  Google Scholar 

  114. Kim Y., Choi E., Hwang J. 2016. Functional studies of five toxin-antitoxin modules in Mycobacterium tuberculosis H37Rv. Front. Microbiol. 7, 2071.

    PubMed  PubMed Central  Google Scholar 

  115. Winther K., Tree J., Tollervey D., et al. 2016. VapCs of Mycobacterium tuberculosis cleave RNAs essential for translation. Nucleic Acids Res. 44, 9860–9871.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Vesper O., Amitai S., Belitsky M., et al. 2011. Selective translation of leaderless mRNAs by specialized ribosomes generated by MazF in Escherichia coli. Cell. 147, 147–157.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Tiwari P., Arora G., Singh M., et al. 2015. MazF ribonucleases promote Mycobacterium tuberculosis drug tolerance and virulence in guinea pigs. Nat. Commun. 6, 6059.

    Article  PubMed  CAS  Google Scholar 

  118. Cortes T., Schubert O., Rose G., et al. 2013. Genomewide mapping of transcriptional start sites defines an extensive leaderless transcriptome in Mycobacterium tuberculosis. Cell. Rep. 5, 1121–1131.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Tanaka N., Meineke B., Shuman S. 2011. RtcB, a novel RNA ligase, can catalyze tRNA splicing and HAC1 mRNA splicing in vivo. J. Biol. Chem. 286, 30253–30257.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Yukl E., Ioanoviciu A., Ortiz De Montellano P., et al. 2007. Interdomain interactions within the two-component heme-based sensor DevS from Mycobacterium tuberculosis. Biochemistry. 46, 9728–9736.

    Article  PubMed  CAS  Google Scholar 

  121. de Keijzer J., Mulder A., de Ru A., et al. 2017. Parallel reaction monitoring of clinical Mycobacterium tuberculosis lineages reveals pre-existent markers of rifampicin tolerance in the emerging Beijing lineage. J. Proteomics. 150, 9–17.

    Article  PubMed  CAS  Google Scholar 

  122. Voskuil M., Visconti K., Schoolnik G. 2004. Mycobacterium tuberculosis gene expression during adaptation to stationary phase and low-oxygen dormancy. Tuberculosis. 84, 218–227.

    Article  PubMed  CAS  Google Scholar 

  123. Kumari P., Sikri K., Kaur K., et al. 2017. Sustained expression of DevR/DosR during long-term hypoxic culture of Mycobacterium tuberculosis. Tuberculosis. 106, 33–37.

    Article  PubMed  CAS  Google Scholar 

  124. Trauner A., Lougheed K., Bennett M., et al. 2012. The dormancy regulator DosR controls ribosome stability in hypoxic mycobacteria. J. Biol. Chem. 287, 24053–24063.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Yamamoto H., Wittek D., Gupta R., et al. 2016. 70Sscanning initiation is a novel and frequent initiation mode of ribosomal translation in bacteria. Proc. Natl. Acad. Sci. U. S. A. 113, e1180–E1189.

    Article  CAS  Google Scholar 

  126. Rustad T., Minch K., Brabant W., et al. 2013. Global analysis of mRNA stability in Mycobacterium tuberculosis. Nucleic Acids Res. 41, 509–517.

    Article  PubMed  CAS  Google Scholar 

  127. Bunker R., Mandal K., Bashiri G., et al. 2015. A functional role of Rv1738 in Mycobacterium tuberculosis persistence suggested by racemic protein crystallography. Proc. Natl. Acad. Sci. U. S. A. 112, 4310–4315.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Smith L., Bochkareva A., Rolfe M., et al. 2017. Cmr is a redox-responsive regulator of DosR that contributes to M. tuberculosis virulence. Nucleic Acids Res. 45, 6600–6612.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Burian J., Ramon-Garcia S., Sweet G., et al. 2012. The mycobacterial transcriptional regulator whiB7 gene links redox homeostasis and intrinsic antibiotic resistance. J. Biol. Chem. 287, 299–310.

    Article  PubMed  CAS  Google Scholar 

  130. Reeves A., Campbell P., Sultana R., et al. 2013. Aminoglycoside cross-resistance in Mycobacterium tuberculosis due to mutations in the 5′ untranslated region of whiB7. Antimicrob. Agents Chemother. 57, 1857–1865.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Li G., Zhang J., Guo Q., et al. 2015. Efflux pump gene expression in multidrug-resistant Mycobacterium tuberculosis clinical isolates. PLoS One. 10, e0119013.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Zimenkov.

Additional information

Original Russian Text © A.V. Antonova, D.A. Gryadunov, D.V. Zimenkov, 2018, published in Molekulyarnaya Biologiya, 2018, Vol. 52, No. 3, pp. 435–450.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonova, A.V., Gryadunov, D.A. & Zimenkov, D.V. Molecular Mechanisms of Drug Tolerance in Mycobacterium tuberculosis. Mol Biol 52, 372–384 (2018). https://doi.org/10.1134/S0026893318030020

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893318030020

Keywords

Navigation