Skip to main content
Log in

Optimal artificial mini-introns for transgenic expression in the cells of mice and hamsters

  • Molecular Cell Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Introns can frequently enhance transgene expression, and sometimes they are absolutely substantial. Based on an analysis of murine genes, in which mRNA does not have alternative splicing, a universal design of the efficiently spliced artificial introns of small sizes has been proposed. These introns are shown to be efficiently spliced in CHO cells from hamster ovaries. The proposed strategy can be used to include introns in cDNA, which would elevate the production of recombinant proteins in cell culture, as well as in transgenic animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EGFP:

enhanced green fluorescent protein

References

  1. Lugones L.G., Scholtmeijer K., Klootwijk R., Wessels J.G. 1999. Introns are necessary for mRNA accumulation in Schizophyllum commune. Mol. Microbiol. 32, 681–689.

    Article  CAS  PubMed  Google Scholar 

  2. Gallegos J.E., Rose A.B. 2015. The enduring mystery of intron-mediated enhancement. Plant Sci. 237, 8–15.

    Article  CAS  PubMed  Google Scholar 

  3. Haddad-Mashadrizeh A., Zomorodipour A., Izadpanah M., Sam M.R., Ataei F., Sabouni F., Hosseini S.J. 2009. A systematic study of the function of the human beta-globin introns on the expression of the human coagulation factor IX in cultured Chinese hamster ovary cells. J. Gene Med. 11, 941–950.

    Article  CAS  PubMed  Google Scholar 

  4. Zieler H., Huynh C.Q. 2002. Intron-dependent stimulation of marker gene expression in cultured insect cells. Insect Mol. Biol. 11, 87–95.

    Article  CAS  PubMed  Google Scholar 

  5. Malik A.K., Wang J.M., Kurachi K. 2001. Effects of a second intron on recombinant MFG retroviral vector. Arch. Virol. 146, 601–609.

    Article  CAS  PubMed  Google Scholar 

  6. Yamashita K., Ikenaka Y., Kakutani T., Kawaharada H., Watanabe K. 1990. Comparison of human lymphotoxin gene expression in CHO cells directed by genomic DNA or cDNA sequence. Agric. Biol. Chem. 54, 2801–2809.

    CAS  PubMed  Google Scholar 

  7. Whitelaw C.B., Archibald A.L., Harris S., McClenaghan M., Simons J.P., Clark A.J. 1991. Targeting expression to the mammary gland: Intronic sequences can enhance the efficiency of gene expression in transgenic mice. Transgenic Res. 1, 3–13.

    Article  CAS  PubMed  Google Scholar 

  8. Le Hir H., Saulière J., Wang Z. 2016. The exon junction complex as a node of post-transcriptional networks. Nat. Rev. Mol. Cell. Biol. 17, 41–54.

    Article  CAS  PubMed  Google Scholar 

  9. Promega Corp. 2009. pCI and pSI Mammalian Expression Vectors. Technical Bulletin. Madison, WI.

  10. Alberts B., Johnson A., Lewis J., Raff M., Roberts K., Walter P. 2002. Molecular Biology of the Cell, 4th ed. New York: Garland Sci.

    Google Scholar 

  11. Ohshima Y., Gotoh Y. 1987. Signals for the selection of a splice site in pre-mRNA. Computer analysis of splice junction sequences and like sequences. J. Mol. Biol. 195, 247–259.

    CAS  PubMed  Google Scholar 

  12. Lawrence C.E., Reilly A.A. 1990. An expectation maximization (EM) algorithm for the identification and characterization of common sites in unaligned biopolymer sequences. Proteins. 7, 41–51.

    Article  CAS  PubMed  Google Scholar 

  13. Gruber A.R., Lorenz R., Bernhart S.H., Neuböck R., Hofacker I.L. 2008. The Vienna RNA websuite. Nucleic Acids Res. 36, W70–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhuang Y., Weiner A.M. 1986. A compensatory base change in U1 snRNA suppresses a 5' splice site mutation. Cell. 46, 827–835.

    Article  CAS  PubMed  Google Scholar 

  15. Gao K., Masuda A., Matsuura T., Ohno K. 2008. Human branch point consensus sequence is yUnAy. Nucleic Acids Res. 36, 2257–2267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Estes P.A., Cooke N.E., Liebhaber S.A. 1992. A native RNA secondary structure controls alternative splicesite selection and generates two human growth hormone isoforms. J. Biol. Chem. 267, 14902–14908.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Tikhonov.

Additional information

Original Russian Text © M.V. Tikhonov, O.G. Maksimenko, P.G. Georgiev, I.V. Korobko, 2017, published in Molekulyarnaya Biologiya, 2017, Vol. 51, No. 4, pp. 671–676.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tikhonov, M.V., Maksimenko, O.G., Georgiev, P.G. et al. Optimal artificial mini-introns for transgenic expression in the cells of mice and hamsters. Mol Biol 51, 592–595 (2017). https://doi.org/10.1134/S0026893317040173

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893317040173

Keywords

Navigation