Skip to main content
Log in

G4-quadruplexes and genome instability

  • Genomics. Transcriptomics
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

In silico comparative analysis of nuclear and mitochondrial genomes of vertebrates and yeast revealed the distribution of nucleotide sequences that are predisposed to the formation of noncanonical DNA structures, G-quadruplexes, which are closely related to the regulation of expression of a number of genes and are abundant within the hot-spots of double-strand DNA breaks. The obtained data indicate the preferred localization of potential quadruplexes in the noncoding DNA sequences, their evolutionary conservation, and the existence of homology between them in the mitochondrial and nuclear genomes. The relationship between quadruplexes, Pif1 helicase, and genomic instability is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Greaves M., Maley C.C. 2012. Clonal evolution in cancer. Nature. 481, 306–313.

    Article  PubMed  CAS  Google Scholar 

  2. Lord C.J., Ashworth A. 2012. The DNA damage response and cancer therapy. Nature. 481, 287–294.

    Article  PubMed  CAS  Google Scholar 

  3. Kadapadi V.K., Nambiar M., Raghavan S.C. 2012. Potential G-quadruplex formation at breakpoint regions of chromosomal translocations in cancer may explain their fragility. Genomics. 100, 72–80.

    Article  Google Scholar 

  4. Raghavan S.C., Lieber M.R. 2007. DNA structure and human diseases. Front. Biosci. 12, 4402–4408.

    Article  PubMed  CAS  Google Scholar 

  5. Raghavan S.C., Lieber M.R. 2006. DNA structures at chromosomal translocation sites. BioEssays. 28, 480–494.

    Article  PubMed  CAS  Google Scholar 

  6. Wang G., Vasquez K.M. 2006. Non-B DNA structureinduced genetic instability. Mutat. Res. 598, 103–119.

    Article  PubMed  CAS  Google Scholar 

  7. Collie G.W., Parkinson G.N. 2011. The application of DNA and RNA G-quadruplexes to therapeutic medicines. Chem. Soc. Rev. 40, 5867–5892.

    Article  PubMed  CAS  Google Scholar 

  8. Nambiar M., Raghavan S.C. 2011. How does DNA break during chromosomal translocations? Nucleic Acids Res. 39, 5813–5825.

    Article  PubMed  CAS  Google Scholar 

  9. Nambiar M., Goldsmith G., Moorthy B.T., Lieber M.R., Joshi M.V., Choudhary B., Hosur R.V., Raghavan S.C. 2011. Formation of a G-quadruplex at the BCL2 major breakpoint region of the t(14;18) translocation in follicular lymphoma. Nucleic Acids Res. 39, 936–948.

    Article  PubMed  CAS  Google Scholar 

  10. Ju Y.S., Lee W.-C., Shin J.-Y., Lee S., Bleazard T., et al. 2012. A transforming KIF5B and RET gene fusion in lung adenocarcinoma revealed from whole-genome and transcriptome sequencing. Genome Res. 22, 436–445.

    Article  PubMed  CAS  Google Scholar 

  11. Fekete A., Kenesi E., Hunyadi-Gulyas E., Durgo H., Berko B., et al. 2012. The guanine-quadruplex structure in the human c-myc gene’s promoter is converted into B-DNA form by the human poly(ADP-ribose)polymerase-1.1. PLoS ONE. 7(8), e42690.

    Article  PubMed  CAS  Google Scholar 

  12. Tsai Y.-C., Qi H., Lin C.-P., Lin R.-K., Kerrigan J.E., Rzuczek S.G., LaVoie E.J., Rice J.E., Pilch D.S., Lyu Y.L., Liu L.F. 2009. A G-quadruplex stabilizer induces M-phase cell cycle arrest. J. Biol. Chemistry. 284, 22535–22543.

    Article  CAS  Google Scholar 

  13. Marcel V., Tran P.L.T., Sagne C., Martel-Planche G., Vaslin L., Teulade-Fichou M.-P., Hall J., Mergny J.-L., Hainaut P., van Dyck E. 2011. G-quadruplex structures in TP53 intron 3: Role in alternative splicing and in production of p53 mRNA isoforms. Carcinogenesis. 32, 271–278.

    Article  PubMed  CAS  Google Scholar 

  14. Capra J.A., Paeschke K., Singh M., Zakian V.A. 2010. G-Quadruplex DNA sequences are evolutionarily conserved and associated with distinct genomic features in Saccharomyces cerevisiae. PLoS Comput. Biol. 6, 1–13.

    Article  Google Scholar 

  15. D’Onorio de Meo P., D’Antonio M., Griggio F., Lupi R., Borsani M., Pavesi G., Castrignano’ T., Pesole G., J. Nucleic Acids. 2010, 6 Gissi C. 2012. Mito-Zoa 2.0: A database resource and search tools for comparative and evolutionary analyses of mitochondrial genomes in Metazoa. Nucleic Acids Res. (Database issue). 40(D1), D1168–D1172.

  16. Wong H.M., Stegle O., Rodgers S., Huppert J.L. 2010. A toolbox for predicting G-quadruplex formation and stability. J. Nucleic Acids. 2010, 6 P; doi 10.4061/2010/564946

    Google Scholar 

  17. Du Z., Zhao Y., Li Ning. 2009. Genome-side colonization of gene regulatory elements by G4 DNA motifs. Nucleic Acids Res. 37, 6784–6798.

    Article  PubMed  CAS  Google Scholar 

  18. Chatre L., Ricchetti M. 2011. Nuclear mitochondrial DNA activates replication in Saccharomyces cerevisiae. PLoS ONE. 6 (3), e17235.

    Article  PubMed  CAS  Google Scholar 

  19. Paeschke K., Capra J.A., Zakian V.A. 2011. DNA replication through G-quadruplex motifs is promoted by the Saccharomyces cerevisiae Pif1 DNA helicase. Cell. 145, 678–691.

    Article  PubMed  CAS  Google Scholar 

  20. de Souza-Pinto N. C., Aamann M.D., Kulikowicz T., Stevnsner T.V., Bohr V.A. 2010. Mitochondrial helicases and mitochondrial genome maintenance. Mech. Ageing Dev. 131, 503–510.

    Article  PubMed  Google Scholar 

  21. Uringa E.-J., Youds J.L., Lisaingo K., Lansdorp P.M., Boulton S.J. 2011. RTEL1: An essential helicase for telomere maintenance and the regulation of homologous recombination. Nucleic Acids Res. 39, 1647–1655.

    Article  PubMed  CAS  Google Scholar 

  22. Thomas J., Schaack S., Pritham E.J. 2010. Pervasive horizontal transfer of rolling-circle transposons among animals. Genome Biol. Evol. 2, 656–664.

    Article  PubMed  Google Scholar 

  23. Yang L., Bennetze J.L. 2009. Structure-based discovery and description of plant and animal Helitrons. Proc. Natl. Acad. Sci. U. S. A. 106. 12832–12837.

    Google Scholar 

  24. Kapitonov V.V., Jurka J. 2001. Rolling-circle transposons in eukaryotes. Proc. Natl. Acad. Sci. U. S. A. 98, 8714–8719.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Glazko.

Additional information

Original Russian Text © B.L. Zybailov, M.D. Sherpa, G.V. Glazko, K.D. Raney, V.I. Glazko, 2013, published in Molekulyarnaya Biologiya, 2013, Vol. 47, No. 2, pp. 224–231.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zybailov, B.L., Sherpa, M.D., Glazko, G.V. et al. G4-quadruplexes and genome instability. Mol Biol 47, 197–204 (2013). https://doi.org/10.1134/S0026893313020180

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893313020180

Keywords

Navigation