Skip to main content
Log in

Activation of transcription of immunoproteasome subunit genes in murine monocytes infected with different mycobacterial strains

  • Cell Molecular Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Processing of mycobacterial antigens by immunoproteasome is necessary to control infection and to protect the organism from the development of active tuberculosis. We have investigated the activation of transcription of immunoproteasome subunit genes in peritoneal monocytes of C57Bl/6 mice infected with a vaccine M. bovis strain BCG and a virulent M. tuberculosis strain H37Rv. The level of transcription of LMP2, LMP7, and MECL1 subunits did not increase on the first and second days after a single infection. After two rounds of infection with M. bovis BCG, only the transcription of the LMP7 subunit gene was enhanced. However, the subsequent infection of monocytes, first with the vaccine strain, then with the virulent strain, resulted in a dramatic rise in the transcription of all immunoproteasome subunit genes. The transcription of the gene that encodes the PA28α subunit of the PA28 regulatory complex was activated only after a single infection of monocytes with M. bovis BCG. Thus, vaccination with M. bovis BCG promotes the efficient activation of immunoproteasomal genes in the case of subsequent contact with the virulent M. tuberculosis strain H37Rv.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MHC:

major histocompatibility complex

IFN-γ:

interferon γ

TNF-α:

tumor necrosis factor α

References

  1. Dye C. 2006. Global epidemiology of tuberculosis. Lancet. 367, 938–940.

    Article  PubMed  Google Scholar 

  2. Colditz G.A., Brever T.F., Berkey C.S., Wilson M.E., Burdick E., Fineberg H.V., Mosteller F. 1994. Efficacy of BCG vaccine in the prevention of tuberculosis: Meta-analysis of the published literature. J. A. Med. Assoc. 271, 698–702.

    Article  CAS  Google Scholar 

  3. Fenton M.J. 1998. Macrophages and tuberculosis. Curr. Opin. Hematol. 5, 72–78.

    Article  PubMed  CAS  Google Scholar 

  4. McDonough K. A., Kress Y., Bloom B. R. 1993. Pathogenesis of tuberculosis: Interaction of Mycobacterium tuberculosis with macrophages. Infect. Immun. 61, 2763–2773.

    PubMed  CAS  Google Scholar 

  5. Preckel T., Fung-Leung W.P., Cai Z., Vitiello A., Salter-Cid L., Winqvist O., Wolfe T.G., Von Herrath M., Angulo A., Ghazal P., Lee J.D., Fourie A.M., Wu Y., Pang J., Ngo K., Peterson P.A., Früh K., Yang Y. 1999. Impaired immunoproteasome assembly and immune response in PA28K/K mice. Science. 286, 2162–2165.

    Article  PubMed  CAS  Google Scholar 

  6. Rechsteiner M., Realini C., Ustrell V. 2000. The proteasome activator 11 S REG (PA28) and class 1 antigen presentation. Biochem. J. 345, 1–15.

    Article  PubMed  CAS  Google Scholar 

  7. Schwarz K., Eggers M., Soza A. 2000. The proteasome regulator PAa/b can enhance antigen presentation without affecting 20S proteasome subunit composition. Eur. J. Immunol. 30, 3672–3679.

    Article  PubMed  CAS  Google Scholar 

  8. Lewinsohn D.M., Grotzke J.E., Heinzel A.S., Zhu L., Ovendale P.J., Johnson M., Alderson M.R. 2006. Secreted proteins from Mycobacterium tuberculosis gain access to the cytosolic MHC class-I antigen-processing pathway. J. Immunol. 177, 437–42.

    PubMed  CAS  Google Scholar 

  9. Grotzke J.E., Harriff M.J., Siler A.C., Nolt D., Delepine J., Lewinsohn D.A., Lewinsohn D.M. 2009. The Mycobacterium tuberculosis phagosome is a HLA-I processing competent organelle. PLoS Pathog. 5, 1000374.

    Article  Google Scholar 

  10. Wang D., Zhou Y., Ji L., He T., Lin F., Lin R., Lin T., Mo Y. 2012. Association of LMP/TAP gene polymorphisms with tuberculosis susceptibility in Li population in China. PLoS One. 7, 33051.

    Article  Google Scholar 

  11. Chernousova L.N., Timofeev A.V., Smirnova T.G., Karpov, V.L., Afanas’eva E.G. 2007. Ex vivo production of interferon-gamma, tumor necrosis factor-alpha, and interleukin-6 by mouse macrophages during infection with M. bovis and M. tuberculosis H37Rv. Bull. Exp. Biol. Med. 144(5), 709–712.

    Article  PubMed  CAS  Google Scholar 

  12. Flynn J.L., Chan J., Triebold K.J., Dalton D.K., Stewart T.A., Bloom B.R. 1993. An essential role for interferon γ in resistance to Mycobacterium tuberculosis infection. J. Exp. Med. 178, 2249–2254.

    Article  PubMed  CAS  Google Scholar 

  13. Dalton D.K., Pitts-Meek S., Keshav S., Figari I.S., Bradley A., Stewart T.A. 1993. Multiple defects of immune cell function in mice with disrupted interferon gamma genes. Science. 259, 1739–1742.

    Article  PubMed  CAS  Google Scholar 

  14. Cooper A.M., Dalton D.K., Stewart T.A., Griffin J.P., Russell D.G., Orme I.M. 1993. Disseminated tuberculosis in interferon γ gene-disrupted mice. J. Exp. Med. 178, 2243–2247.

    Article  PubMed  CAS  Google Scholar 

  15. Banaiee N., Kincaid E.Z., Buchwald U., Jacobs W.R., Jr., Ernst J.D. 2006. Potent inhibition of macrophage responses to IFN-γ by live virulent Mycobacterium tuberculosis is independent of mature mycobacterial lipoproteins but dependent on TLR2. J. Immunol. 176, 3019–3027.

    PubMed  CAS  Google Scholar 

  16. Ortiz-Navarrete V., Seelig A., Gernold M., Frentzel S., Kloetzel P.M., Hammerling G.J. 1991. Subunit of the ‘20S’ proteasome (multicatalytic proteinase) encoded by the major histocompatibility complex. Nature. 353, 662–664.

    Article  PubMed  CAS  Google Scholar 

  17. Yang Y., Waters J.B., Fruh K., Peterson P.A. 1992. Proteasomes are regulated by interferon gamma: Implications for antigen processing. Proc. Natl. Acad. Sci. U. S. A. 89. 4928–4932.

    Google Scholar 

  18. Dubiel W., Pratt G., Ferrell K., Rechsteiner M. 1994. Purification of a 11S regulator of the multicatalytic proteinase. J. Biol. Chem. 267, 22369–22377.

    Google Scholar 

  19. Ma C.P., Slaugther C.A., DeMartino G.N. 1992. Identification, purification, and characterisation of a protein activator (PA28) of the 20S proteasome (macropain). J. Biol. Chem. 267, 10515–10523.

    PubMed  CAS  Google Scholar 

  20. van den Eynde B.J., Morel S. 2001. Different processing of class-1-restricted epitopes by the standard proteasome and immunoproteasome. Curr. Opin. Immunol. 13, 147–153.

    Article  PubMed  Google Scholar 

  21. Hendil K.B., Khan S., Tanaka K. 1998. Simultaneous binding of PA28 and PA700 activators to 20S proteasomes. Biochem. J. 332, 749–754.

    PubMed  Google Scholar 

  22. Sharova N.P. 2006. Immune proteasomes and immunity. Russ. J. Dev. Biol. 37(3), 139–145.

    Article  CAS  Google Scholar 

  23. Neyrolles O., Gould K., Gares M.P., Brett S., Janssen R., O’Gaora P., Herrmann J.L., Prévost M.C., Perret E., Thole J.E., Young D. 2001. Lipoprotein access to MHC class I presentation during infection of murine macrophages with live mycobacteria. J. Immunol. 166, 447–457.

    PubMed  CAS  Google Scholar 

  24. Schaible U.E., Winau F., Sieling P.A., Fischer K., Collins H.L., Hagens K., Modlin R.L., Brinkmann V., Kaufmann S.H. 2003. Apoptosis facilitates antigen presentation to T lymphocytes through MHC-I and CD1 in tuberculosis. Nature Med. 9, 1039–1046.

    Article  PubMed  CAS  Google Scholar 

  25. Molloy A., Laochumroonvorapong P., Kaplan G. 1994. Apoptosis, but not necrosis, of infected monocytes is coupled with killing of intracellular bacillus. J. Exp. Med. 180, 1499–1509.

    Article  PubMed  CAS  Google Scholar 

  26. Flesch I.E., Hess J.H., Huang S., Aguet M., Rothe J., Bluethmann H., Kaufmann S.H. 1995. Early IL-12 production by macrophages in response to mycobacterial infection depends on IF and TNF. J. Exp. Med. 181, 1615–1621.

    Article  PubMed  CAS  Google Scholar 

  27. Groettrup M., Standera S., Stohwasser R., Kloetzel P.-M. 1997. The subunits MECL-1 and LMP2 are mutually required for incorporation into the 20S proteasome. Proc. Natl. Acad. Sci. U. S. A. 94, 8970–8975.

    Article  PubMed  CAS  Google Scholar 

  28. Griffin T.A., Nandi D., Cruz M., Fehling H.J., van Kaer L., Monaco J.J., Colbert A. 1998. Immunoproteasome assembly: Cooperative incorporation of interferon γ (IFNγ)-inducible subunits. J. Exp. Med. 187, 97–104.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Kuzmenko.

Additional information

Original Russian Text © A.V. Timofeev, Yu.V. Kuzmenko, I.I. Zharkova, E.S. Starodubova, V. L. Karpov, 2013, published in Molekulyarnaya Biologiya, 2013, Vol. 47, No. 2, pp. 311–316.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Timofeev, A.V., Kuzmenko, Y.V., Zharkova, I.I. et al. Activation of transcription of immunoproteasome subunit genes in murine monocytes infected with different mycobacterial strains. Mol Biol 47, 275–279 (2013). https://doi.org/10.1134/S0026893313020155

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893313020155

Keywords

Navigation