Skip to main content
Log in

Mesenchymal stem cells as tool for antitumor therapy

  • Reviews
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The development of antitumor preparations with low toxicity and high selectivity of action is one of the top priorities of cancer gene therapy. Mesenchymal stem cells possess natural tropism towards tumors, a property that makes it possible to use them as vehicles for the targeted delivery of therapeutic genes to tumors of various etiologies. At present, genes that encode enzymes (cytosine deaminase, thymidine kinase, carboxyl esterase), cytokines (IL-2, IL-4, IL-12, and IFN-β), and apoptosis inducing factors (TRAIL) are used as therapeutic genes. Mesenchymal stem cells, as demonstrated using experimental models of tumors of various etiologies, as well as animals with metastases in brain and lungs, are able to successfully deliver therapeutic genes into tumors and produce a significant antitumor effect. However, to effectively use this therapeutic strategy in a clinical setting, a number of technical problems must be solved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim J.H., Kim J.Y., Kim S.U., Cho K.G. 2012. Therapeutic effect of genetically modified human neural stem cells encoding cytosine deaminase on experimental glioma. Biochem. Biophys. Res. Commun. 417, 534–540.

    Article  PubMed  CAS  Google Scholar 

  2. Friedenstein A.Ya., Chailakhyan R.K., Lalykina K.S. 1970. On finroblast-like cells in cultures of guinea pig hematopoietic tissues. Tsitologiya. 12, 1147–1155.

    Google Scholar 

  3. Dominici M., Le Blanc K., Mueller I., et al. 2006. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 8, 315–317.

    Article  PubMed  CAS  Google Scholar 

  4. Traktuev D.O., Merfeld-Clauss S., Li J., et al. 2008. A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ. Res. 102, 77–85.

    Article  PubMed  CAS  Google Scholar 

  5. Crisan M., Yap S., Casteilla L., et al. 2008. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell. 3, 301–313.

    Article  PubMed  CAS  Google Scholar 

  6. Feng J., Mantesso A., De Bari C., et al. 2011. Dual origin of mesenchymal stem cells contributing to organ growth and repair. Proc. Natl. Acad. Sci. U. S. A. 108, 6503–6508.

    Article  PubMed  CAS  Google Scholar 

  7. Cihova M., Altanerova V., Altaner C. 2011. Stem cell based gene therapy. Mol. Pharmaceutics. 8, 1480–1487.

    Article  CAS  Google Scholar 

  8. Mizuno H., Tobita M., Uysal A.C. 2012. Adiposederived stem cells as a novel tool for future regenerative medicine. Stem Cells. 30, 804–810.

    Article  PubMed  CAS  Google Scholar 

  9. Aquino J.B., Bolontrade M.F., Garcia M.G., et al. 2010. Mesenchymal stem cells as therapeutic tools and gene carriers in liver fibrosis and hepatocellular carcinoma. Gene Ther. 17, 692–708.

    Article  PubMed  CAS  Google Scholar 

  10. Ghannam S., Bouffi C., Djouad F., et al. 2010. Immunosuppression by mesenchymal stem cells: Mechanism and clinical applications. Stem Cell Res. Ther. 1, 1–7.

    Article  Google Scholar 

  11. Galderisi U., Giordano A., Paggi M.G. 2010. The bad and the good of mecenchymal stem cells in cancer: Boosters of tumor growth and vehicles for targeted delivery of anticancer agents. World J. Stem Cells. 2, 5–12.

    Article  PubMed  Google Scholar 

  12. Zhou Y.F., Bosch-Marce M., Okuyama H., et al. 2006. Spontaneous transformation of cultured mouse bone marrow-derived stromal cells. Cancer Res. 66, 10849–10854.

    Article  PubMed  CAS  Google Scholar 

  13. Foudah D., Redaelli S., Donzelli E., et al. 2009. Monitoring the genomic stability of in vitro cultured rat bone-marrow-derived mesenchymal stem cells. Chromosome Res. 17, 1025–1039.

    Article  PubMed  CAS  Google Scholar 

  14. Grigoryan A.S., Kruglyakov P.V. 2009. Spontaneous malignant transformation of multipotent mesenchymal striomal cells in culture: Does it actually take place? Klet. Transplantol. Tkan. Inzhner. 4, 78–82.

    Google Scholar 

  15. Prockop D.J., Brenner M., Fibbe W.E., et al. 2010. Defining the risks of mesenchymal stromal cell therapy. Cytotherapy. 12, 576–578.

    Article  PubMed  Google Scholar 

  16. Ueyama H., Horibe T., Hinotsu S., et al. 2012. Chromosomal variability of human mesenchymal stem cells cultured under hypoxic conditions. J. Cell Mol. Med. 16, 72–82.

    Article  PubMed  CAS  Google Scholar 

  17. Aboody K.S., Brown A., Rainov N.G., et al. 2000. Neural stem cells display extensive tropism for pathology in adult brain: Evidence from intracranial gliomas. Proc. Natl. Acad. Sci. U. S. A. 23, 12846–12851.

    Article  Google Scholar 

  18. Song C.H., Honmou O., Ohsawa N., et al. 2009. Effect of transplantation of bone marrow-derived mesenchymal stem cells on mice infected with prions. J. Virol. 83, 5918–5227.

    Article  PubMed  CAS  Google Scholar 

  19. Yang K.L., Lee J.T., Pang C.Y., et al. 2012. Human adipose-derived stem cells for the treatment of intracerebral hemorrhage in rats via femoral intravenous injection. Cell Mol. Biol. Lett. 17, 376–392.

    Article  PubMed  CAS  Google Scholar 

  20. Aboody K.S., Najbauer J., Danks M.K. 2008. Stem and progenitor cell-mediated tumor selective gene therapy. Gene Ther. 15, 739–752.

    Article  PubMed  CAS  Google Scholar 

  21. Karp M.J., Teo G.S.L. 2009. Mesenchymal stem cell homing: The devil is in the details. Cell Stem Cell. 4, 206–216.

    Article  PubMed  CAS  Google Scholar 

  22. Hemeda H., Jakob M., Ludwig A.K., et al. 2010. Interferon-gamma and tumor necrosis factor-alpha differentially affect cytokine expression and migration properties of mesenchymal stem cells. Stem Cells Dev. 19, 693–706.

    Article  PubMed  CAS  Google Scholar 

  23. Birnbaum T., Roider J., Schankin C.J., et al. 2007. Malignant gliomas actively recruit bone marrow stromal cells by secreting angiogenic cytokines. J. Neurooncol. 83, 241–247.

    Article  PubMed  CAS  Google Scholar 

  24. Ringe J., Strassburg S., Neumann K., et al. 2007. Towards in situ tissue repair: Human mesenchymal stem cells express chemokine receptors CXCR1, CXCR2 and CCR2, and migrate upon stimulation with CXCL8 but not CCL2. J. Cell Biochem. 101, 135–146.

    Article  PubMed  CAS  Google Scholar 

  25. Augello A., Kurth T.B., Bari C.D. 2010. Mesenchymal stem cells: A perspective from in vitro cultures to in vivo migration and niches. Eur. Cells Materials. 20, 121–133.

    CAS  Google Scholar 

  26. Gutova M., Najbauer J., Frank R.T., et al. 2008. Urokinase plasminogen activator and urokinase plasminogen activator receptor mediate human stem cell tropism to malignant solid tumors. Stem Cells. 26, 1406–1413.

    Article  PubMed  CAS  Google Scholar 

  27. Bobis-Wozowicz S., Miekus K., Wybieralska E., et al. 2011. Genetically modified adipose tissue-derived mesenchymal stem cells overexpressing CXCR4 display increased motility, invasiveness, and homing to bone marrow of NOD/SCID mice. Exp. Hematol. 39, 686–696.

    Article  PubMed  CAS  Google Scholar 

  28. Thieme S., Ryser M., Gentsch M., et al. 2009. Stromal cell-derived factor-1alpha-directed chemoattraction of transiently CXCR4-overexpressing bone marrow stromal cells into functionalized three-dimensional biomimetic scaffolds. Tissue Eng. C: Methods. 15, 687–696.

    Article  CAS  Google Scholar 

  29. Wiehe J.M., Kaya Z., Homann J.M., et al. 2012. GMP-adapted overexpression of CXCR4 in human mesenchymal stem cells for cardiac repair. Int. J. Cardiol. [Epub ahead of print]

    Google Scholar 

  30. Gheisari Y., Azadmanesh K., Ahmadbeigi N., et al. 2012. Genetic modification of mesenchymal stem cells to overexpress CXCR4 and CXCR7 does not improve the homing and therapeutic potentials of these cells in experimental acute kidney injury. Stem Cells Dev. [Epub ahead of print]

    Google Scholar 

  31. Maijenburg M.W., Gilissen C., Melief S.M., et al. 2012. Nuclear receptors Nur77 and Nurr1 modulate mesenchymal stromal cell migration. Stem Cells Dev. 21, 228–238.

    Article  PubMed  CAS  Google Scholar 

  32. Kim S.M., Kim D.S., Jeong C.H., et al. 2011. CXC chemokine receptor 1 enhances the ability of human umbilical cord blood-derived mesenchymal stem cells to migrate toward gliomas. Biochem. Biophys. Res. Commun. 407, 741–746.

    Article  PubMed  CAS  Google Scholar 

  33. Klopp A.H., Spaeth E.L., Dembinski J.L., et al. 2007. Tumor irradiation increases the recruitment of circulating mesenchymal stem cells into the tumor microenvironment. Cancer Res. 67, 11687–11695.

    Article  PubMed  CAS  Google Scholar 

  34. Komarova S., Roth J., Alvarez R., et al. 2010. Targeting of mesenchymal stem cells to ovarian tumors via an artificial receptor. J. Ovarian Res. 3, 1–14.

    Article  Google Scholar 

  35. Bexell D., Gunnarsson S., Tormin A., et al. 2009. Bone marrow multipotent mesenchymal stroma cells act as pericyte-like migratory vehicles in experimental gliomas. Mol. Ther. 17, 183–190.

    Article  PubMed  CAS  Google Scholar 

  36. Reagan M.R., Kaplan D.L. 2011. Concise review: Mesenchymal stem cell tumor-homing: Detection methods in disease model systems. Stem Cells. 29, 920–927.

    Article  PubMed  CAS  Google Scholar 

  37. Bexell D., Gunnarsson S., Svensson A., et al. 2012. Rat multipotent mesenchymal stromal cells lack longdistance tropism to 3 different rat glioma models. Neurosurgery. 70, 731–739.

    Article  PubMed  Google Scholar 

  38. Wang H., Cao F., De A., et al. 2009. Trafficking mesenchymal stem cell engraftment and differentiation in tumor-bearing mice by bioluminescence imaging. Stem Cells. 27, 1548–1558.

    Article  PubMed  CAS  Google Scholar 

  39. Anderson S.A., Glod J., Arbab A.S., et al. 2005. Noninvasive MR imaging of magnetically labeled stem cells to directly identify neovasculature in a glioma model. Blood. 105, 420–425.

    Article  PubMed  CAS  Google Scholar 

  40. Webb G.A., Hoehn M., Himmelreich U. 2006. In vivo molecular MR imaging: Potential and limit. In: Modern Magnetic Resonance. Ed. Webb G.A. Dordrecht, Netherlands: Springer, pp. 1087–1098.

    Google Scholar 

  41. Mishra R., Su W., Pohmann R., Pfeuffer J., et al. 2009. Cell-penetrating peptides and peptide nucleic acid-coupled MRI contrast agents: Evaluation of cellular delivery and target binding. Bioconjug. Chem. 20, 1860–1868.

    Article  PubMed  CAS  Google Scholar 

  42. Patel D., Kell A., Simard B., et al. 2011. The cell labeling efficacy, cytotoxicity and relaxivity of copper-activated MRI/PET imaging contrast agents. Biomaterials. 32, 1167–1176.

    Article  PubMed  CAS  Google Scholar 

  43. Korf J., Veenma-van der Duin L., et al. 1998. Divalent cobalt as a label to study lymphocyte distribution using PET and SPECT. J. Nucl. Med. 39, 836–841.

    PubMed  CAS  Google Scholar 

  44. Hung S.C., Deng W.P., Yang W.K., et al. 2005. Mesenchymal stem cell targeting of microscopic tumors and tumor stroma development monitored by noninvasive in vivo positron emission tomography imaging. Clin. Cancer Res. 11, 7749–7756.

    Article  PubMed  CAS  Google Scholar 

  45. Naumova A.V., Reinecke H., Yarnykh V., et al. 2010. Ferritin overexpression for noninvasive magnetic resonance imaging-based tracking of stem cells transplanted into the heart. Mol. Imaging. 9, 201–210.

    PubMed  CAS  Google Scholar 

  46. Yaghoubi S.S., Gambhir S.S. 2006. PET imaging of herpes simplex virus type 1 thymidine kinase (HSV1-tk) or mutant HSV1-sr39tk reporter gene expression in mice and humans using [18F]-FHBG. Nature Protoc. 1, 3069–3075.

    Article  CAS  Google Scholar 

  47. Balyasnikova I.V., Franco-Gou R., Mathis J.M., Lesniak M.S. 2010. Genetic modification of mesenchymal stem cells to express a single-chain antibody against EGFRvIII on the cell surface. J. Tissue Eng. Regen. Med. 4, 247–258.

    Article  PubMed  CAS  Google Scholar 

  48. Madeira C., Ribeiro S.C., Pinheiro I.S., et al. 2011. Gene delivery to human bone marrow mesenchymal stem cells by microporation. J. Biotechnol. 151, 130–136.

    Article  PubMed  CAS  Google Scholar 

  49. Lam A.P., Dean D.A. 2010. Progress and prospects: Nuclear import of nonviral vectors. Gene Ther. 17, 439–447.

    Article  PubMed  CAS  Google Scholar 

  50. Choi S.A., Hwang S.K., Wang K.C., et al. 2011. Therapeutic efficacy and safety of TRAIL-producing human adipose tissue-derived mesenchymal stem cells against experimental brainstem glioma. Neuro Oncol. 13, 61–69.

    Article  PubMed  CAS  Google Scholar 

  51. Loebinger M.R., Sage E.K., Davies D., et al. 2010. TRAIL-expressing mesenchymal stem cells kill the putative cancer stem cell population. Br. J. Cancer. 103, 1692–1697.

    Article  PubMed  CAS  Google Scholar 

  52. Mueller L.P., Luetzkendorf J., Widder M., et al. 2011. TRAIL-transduced multipotent mesenchymal stromal cells (TRAIL-MSC) overcome TRAIL resistance in selected CRC cell lines in vitro and in vivo. Cancer Gene Ther. 18, 229–239.

    Article  PubMed  CAS  Google Scholar 

  53. Kim S.M., Oh J.H., Park S.A., et al. 2010. Irradiation enhances the tumor tropism and therapeutic potential of tumor necrosis factor-related apoptosis-inducing ligand-secreting human umbilical cord blood-derived mesenchymal stem cells in glioma therapy. Stem Cells. 28, 2217–2228.

    Article  PubMed  Google Scholar 

  54. Kahana S., Finniss S., Cazacu S., et al. 2011. Proteasome inhibitors sensitize glioma cells and glioma stem cells to TRAIL-induced apoptosis by PKCɛ-dependent downregulation of AKT and XIAP expressions. Cell Signal. 23, 1348–1357.

    Article  PubMed  CAS  Google Scholar 

  55. Loebinger M.R., Eddaoudi A., Davies D., et al. 2009. Mesenchymal stem cell delivery of TRAIL can eliminate metastatic cancer. Cancer Res. 69, 4134–4142.

    Article  PubMed  CAS  Google Scholar 

  56. Kucerova L., Matuskova M., Pastorakova A., et al. 2008. Cytosine deaminase expressing human mesenchymal stem cells mediated tumour regression in melanoma bearing mice. J. Gene Med. 10, 1071–1082.

    Article  PubMed  CAS  Google Scholar 

  57. Cavarretta I.T., Altanerova V., Matuskova M., et al. 2010. Adipose tissue-derived mesenchymal stem cells expressing prodrug-converting enzyme inhibit human prostate tumor growth. Mol. Ther. 18, 223–231.

    Article  PubMed  CAS  Google Scholar 

  58. You M.H., Kim W.J., Shim W., et al. 2009. Cytosine deaminase-producing human mesenchymal stem cells mediate an antitumor effect in a mouse xenograft model. J. Gastroenterol. Hepatol. 24, 1393–1400.

    Article  PubMed  CAS  Google Scholar 

  59. Shimato S., Natsume A., Takeuchi H., et al. 2007. Human neural stem cells target and deliver therapeutic gene to experimental leptomeningeal medulloblastoma. Gene Ther. 14, 1132–1142.

    Article  PubMed  CAS  Google Scholar 

  60. Chang D.Y., Yoo S.W., Hong Y., et al. 2010. The growth of brain tumors can be suppressed by multiple transplantation of mesenchymal stem cells expressing cytosine deaminase. Int. J. Cancer. 127, 1975–1983.

    Article  PubMed  CAS  Google Scholar 

  61. Unger M.M., Wahl J., Ushmorov A., et al. 2007. Enriching suicide gene bearing tumor cells for an increased bystander effect. Cancer Gene Ther. 14, 30–38.

    Article  PubMed  CAS  Google Scholar 

  62. Pu K., Li S.Y., Gao Y., et al. 2011. Bystander effect in suicide gene therapy using immortalized neural stem cells transduced with herpes simplex virus thymidine kinase gene on medulloblastoma regression. Brain Res. 1369, 245–252.

    Article  PubMed  CAS  Google Scholar 

  63. Song C., Xiang J., Tang J., et al. 2011. Thymidine kinase gene modified bone marrow mesenchymal stem cells as vehicles for antitumor therapy. Hum. Gene Ther. 22, 439–449.

    Article  PubMed  CAS  Google Scholar 

  64. Zischek C., Niess H., Ischenko I., et al. 2009. Targeting tumor stroma using engineered mesenchymal stem cells reduces the growth of pancreatic carcinoma. Ann. Surg. 250, 747–753.

    Article  PubMed  Google Scholar 

  65. Choi S.A., Lee J.Y., Wang K.C., et al. 2012. Human adipose tissue-derived mesenchymal stem cells: Characteristics and therapeutic potential as cellular vehicles for prodrug gene therapy against brain stem gliomas. Eur. J. Cancer. 48, 129–137.

    Article  PubMed  CAS  Google Scholar 

  66. Gutova M., Najbauer J., Chen M.Y., et al. 2010. Therapeutic targeting of melanoma cells using neural stem cells expressing carboxylesterase, a CPT-11 activating enzyme. Curr. Stem Cell Res. Ther. 5, 273–276.

    Article  PubMed  CAS  Google Scholar 

  67. Ehtesham M., Kabos P., Kabosova A., et al. 2002. The use of interleukin 12-secreting neural stem cells for the treatment of intracranial glioma. Cancer Res. 62, 5657–5663.

    PubMed  CAS  Google Scholar 

  68. Ryu C.H., Park S.H., Park S.A., et al. 2011. Gene therapy of intracranial glioma using interleukin 12-secreting human umbilical cord blood-derived mesenchymal stem cells. Hum. Gene Ther. 22, 733–743.

    Article  PubMed  CAS  Google Scholar 

  69. Hong X., Miller C., Savant-Bhonsale S. 2009. Antitumor treatment using interleukin-12-secreting marrow stromal cells in an invasive glioma model. Neurosurgery. 64, 1139–1146.

    Article  PubMed  Google Scholar 

  70. Seo S.H., Kim K.S., Park S.H., et al. 2011. The effects of mesenchymal stem cells injected via different routes on modified IL-12-mediated antitumor activity. Gene Ther. 18, 488–495.

    Article  PubMed  CAS  Google Scholar 

  71. Gao P., Ding Q., Wu Z., et al. 2010. Therapeutic potential of human mesenchymal stem cells producing IL-12 in a mouse xenograft model of renal cell carcinoma. Cancer Lett. 290, 157–166.

    Article  PubMed  CAS  Google Scholar 

  72. Duan X., Guan H., Cao Y., et al. 2009. Murine bone marrow-derived mesenchymal stem cells as vehicles for interleukin-12 gene delivery into Ewing sarcoma tumors. Cancer. 115, 13–22.

    Article  PubMed  CAS  Google Scholar 

  73. Chen X., Lin X., Zhao J., et al. 2008. A tumor-selective biotherapy with prolonged impact on established metastases based on cytokine gene-engineered MSCs. Mol. Ther. 16, 749–756.

    Article  PubMed  CAS  Google Scholar 

  74. Eliopoulos N., Francois M., Boivin M.N. 2008. Neoorganoid of marrow mesenchymal stromal cells secreting interleukin-12 for breast cancer therapy. Cancer Res. 68, 4810–4818.

    Article  PubMed  CAS  Google Scholar 

  75. Kim S.W., Kim H.J., Kim S.B., et al. 2003. Murine bone marrow stromal cells: Implications for their use in gene modified cell therapy. Leuk. Lymphoma. 44, 1973–1978.

    Article  PubMed  Google Scholar 

  76. Kim M.H., Lee S.S., Lee S.K., et al. 2006. Interleukin-2 gene-encoded stromal cells inhibit the growth of metastatic cholangiocarcinomas. World J. Gastroenterol. 12, 1889–1894.

    PubMed  CAS  Google Scholar 

  77. Stagg J., Lejeune L., Paquin A., Galipeau J. 2004. Marrow stromal cells for interleukin-2 delivery in cancer immunotherapy. Hum. Gene Ther. 15, 597–608.

    Article  PubMed  CAS  Google Scholar 

  78. Benedetti S., Pirola B., Pollo B., et al. 2000. Gene therapy of experimental brain tumors using neural progenitor cells. Nature Med. 6, 447–450.

    Article  PubMed  CAS  Google Scholar 

  79. Gunnarsson S., Bexell D., Svensson A., et al. 2010. Intratumoral IL-7 delivery by mesenchymal stromal cells potentiates IFNgamma-transduced tumor cell immunotherapy of experimental glioma. J. Neuroimmunol. 218, 140–144.

    Article  PubMed  CAS  Google Scholar 

  80. Sartoris S., Mazzocco M., Tinelli M., et al. 2011. Efficacy assessment of interferon-alpha-engineered mesenchymal stromal cells in a mouse plasmacytoma model. Stem Cells Dev. 20, 709–719.

    Article  PubMed  CAS  Google Scholar 

  81. Ling X., Marini F., Konopleva M., et al. 2010. Mesenchymal stem cells overexpressing IFN-β inhibit breast cancer growth and metastases through stat3 signaling in a syngeneic tumor model. Cancer Microenviron. 3, 83–95.

    Article  PubMed  CAS  Google Scholar 

  82. Xin H., Kanehira M., Mizuguchi H., et al. 2007. Targeted delivery of CX3CL1 to multiple lung tumors by mesenchymal stem cells. Stem Cells. 25, 1618–1626.

    Article  PubMed  CAS  Google Scholar 

  83. Xin H., Sun R., Kanehira M., et al. 2009. Intratracheal delivery of CX3CL1-expressing mesenchymal stem cells to multiple lung tumors. Mol. Med. 15, 321–327.

    Article  PubMed  CAS  Google Scholar 

  84. Gao Y., Yao A., Zhang W., et al. 2010. Human mesenchymal stem cells overexpressing pigment epitheliumderived factor inhibit hepatocellular carcinoma in nude mice. Oncogene. 29, 2784–2794.

    Article  PubMed  CAS  Google Scholar 

  85. Zolochevska O., Yu G., Gimble J., Figueiredo M.L. 2011. PEDF and MDA-7 cytokine gene therapies delivered by adipose-derived mesenchymal stem cells are effective in reducing prostate cancer cell growth. Stem Cells Dev. 21, 1112–1123.

    Article  PubMed  Google Scholar 

  86. Ghaedi M., Soleimani M., Taghvaie N.M., et al. 2011. Mesenchymal stem cells as vehicles for targeted delivery of anti-angiogenic protein to solid tumors. J. Gene Med. 13, 171–180.

    Article  PubMed  CAS  Google Scholar 

  87. Zhang X., Xu W., Qian H., et al. 2011.Mesenchymal stem cells modified to express lentivirus-TNFalpha-Tumstatin inhibit the growth of prostate cancer. J. Cell Mol. Med. 15, 433–444.

    Article  PubMed  CAS  Google Scholar 

  88. Dwyer R.M., Ryan J., Havelin R.J., et al. 2011. Mesenchymal stem cell (MSC) mediated delivery of the sodium iodide symporter (NIS) supports radionuclide imaging and treatment of breast cancer. Stem Cells. 29, 1149–1157.

    Article  PubMed  CAS  Google Scholar 

  89. Knoop K., Kolokythas M., Klutz K., et al. 2011. Image-guided, tumor stroma-targeted 131I therapy of hepatocellular cancer after systemic mesenchymal stem cell-mediated NIS gene delivery. Mol. Ther. 19, 1704–1713.

    Article  PubMed  CAS  Google Scholar 

  90. Lee R.H., Pulin A.A., Seo M.J., et al. 2009. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Stem Cell. 5, 54–63.

    CAS  Google Scholar 

  91. Bartosh T.J., Ylöstalo J.H., Mohammadipoor A., et al. 2010. Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties. Proc. Natl. Acad. Sci. U. S. A. 107, 13724–13729.

    Article  PubMed  CAS  Google Scholar 

  92. Hodgkinson C.P., Gomez J.A., Mirotsou M., Dzau V.J. 2010. Genetic engineering of mesenchymal stem cells and its application in human disease therapy. Hum. Gene Ther. 21, 1513–1526.

    Article  PubMed  CAS  Google Scholar 

  93. Nardi N.B., Camassola M. 2011. Isolation and culture of rodent bone marrow-derived multipotent mesenchymal stromal cells. Meth. Mol. Biol. 698, 151–160.

    Article  CAS  Google Scholar 

  94. Porada C.D., Almeida-Porada G. 2010. Mesenchymal stem cells as therapeutics and vehicles for gene and drug delivery. Adv. Drug Deliv. Rev. 62, 1156–1166.

    Article  PubMed  CAS  Google Scholar 

  95. Noyan F., Díez I.A., Hapke M., et al. 2012. Induced transgene expression for the treatment of solid tumors by hematopoietic stem cell-based gene therapy. Cancer Gene Ther. 19, 352–357.

    Article  PubMed  CAS  Google Scholar 

  96. Davis C., Price R., Acharya G., et al. 2011. Hematopoietic derived cell infiltration of the intestinal tumor microenvironment in Apc Min/+ mice. Microsc. Microanal. 17, 528–539.

    Article  PubMed  CAS  Google Scholar 

  97. Tabatabai G., Hasenbach K., Herrmann C., et al. 2010. Glioma tropism of lentivirally transduced hematopoietic progenitor cells. Int. J. Oncol. 36, 1409–1417.

    PubMed  CAS  Google Scholar 

  98. Beyer I., Li Z., Persson J., et al. 2011. Controlled extracellular matrix degradation in breast cancer tumors improves therapy by trastuzumab. Mol. Ther. 19, 479–489.

    Article  PubMed  CAS  Google Scholar 

  99. Casazza A., Fu X., Johansson I., et al. 2011. Systemic and targeted delivery of semaphorin 3A inhibits tumor angiogenesis and progression in mouse tumor models. Arterioscler. Thromb. Vasc. Biol. 31, 741–749.

    Article  PubMed  CAS  Google Scholar 

  100. Li Z., Liu Y., Tuve S., et al. 2009. Toward a stem cell gene therapy for breast cancer. Blood. 113, 5423–5433.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Karshieva.

Additional information

Original Russian Text © S.S. Karshieva, L.S. Krasikova, A.V. Belyavskii, 2013, published in Molekulyarnaya Biologiya, 2013, Vol. 47, No. 1, pp. 50–60.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karshieva, S.S., Krasikova, L.S. & Belyavskii, A.V. Mesenchymal stem cells as tool for antitumor therapy. Mol Biol 47, 45–54 (2013). https://doi.org/10.1134/S0026893313010068

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893313010068

Keywords

Navigation