Skip to main content
Log in

Polysaccharide-free nucleic acids and proteins of Abelmoschus esculentus for versatile molecular studies

  • Genomics. Transcriptomics
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Abelmoschus esculentus (okra) is one of the polysaccharide rich crop plants. The polysaccharides interfere with nucleic acids and protein isolation thereby affecting the downstream molecular analysis. So, to understand the molecular systematics of okra, high quality DNA, RNA and proteins are essential. In this study we present a method for extracting genomic DNA, RNA and proteins from polysaccharide rich okra tissues. The conventional extraction procedures were integrated with purification treatments with pectinase, RNase and proteinase K, which improved the quality and quantity of DNA as well. Using SDS, additional washes with CIA and NaCl precipitation improved the RNA isolation both quantitatively and qualitatively. Finally, ammonium acetate mediated protein precipitation and re-solubilization increased the quality of total protein extracts from the okra leaves. All of the methods above not only eliminated the impurities but also improved the quality and quantity of nucleic acids and proteins. Further, we subjected these samples to versatile downstream molecular analyses such as restriction endonuclease digestion, RAPD, Southern, reverse transcription-PCR and Western analysis and were proved to be successful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PC:

phenol (pH 4.5): chloroform

CIA:

chloroform: isoamyl alcohol

PCIA:

phenol: chloroform: isoamyl alcohol

CTAB:

hexadecyltrimethylammonium bromide

DTT:

dithiotreitol

PMSF:

phenylmethanesulfonyl fluoride

PVPP:

polyvinyl polypyrrolidone

DEPC:

diethyl pyrocarbonate

RH:

relative humidity

RT:

room temperature

References

  1. Porebski S., Bailey L.G., Baum B.R. 1997. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharides and polyphenol component. Plant Mol. Biol. Rep. 15, 8–15.

    Article  CAS  Google Scholar 

  2. Fang G., Hammar S., Grumet R. 1992. A quick and inexpensive method for removing polysaccharides from plant genomic DNA. BioTechniques. 13, 52–54.

    PubMed  CAS  Google Scholar 

  3. Csaikl U.M., Bastian H., Brettschneider S., Gauch A., Meir M., Schauerte F., Scholz S., Sperisen B., Vornam Z.B. 1998. Comparative analysis of different DNA extraction protocols: A fast, universal maxi-preparation of high quality plant DNA for genetic evaluation and phylogenetic studies. Plant Mol. Biol. Rep. 16, 69–86.

    Article  CAS  Google Scholar 

  4. Belletti P.C., Marzachi K., Lanteri S. 1998. Flow cytometric measurement of nuclear DNA content in Capsicum (Solanaceae). Plant Syst. Evol. 209, 85–91.

    Article  CAS  Google Scholar 

  5. Schlink K., Reski R. 2002. Preparing high quality DNA from moss (Physcomitrella parens). Plant. Mol. Biol. Rep. 20, 423–423.

    Article  Google Scholar 

  6. Yun-Jiang C., Wen-Wu G., Hva-Lin Y., Xlao-Min P., Xivxin D. 2003. An efficient protocol for genomic DNA extraction from citrus species. Plant Mol. Biol. Rep. 21, 177–177.

    Article  Google Scholar 

  7. Michaud H., Lumaret J.P., Ripoll L.T. 1995. A procedure for the extraction of chloroplast DNA from broad-leaved tree species. Plant Mol. Biol. Rep. 2, 131–137.

    Article  Google Scholar 

  8. Tribouch S.O., Danilenko N.G., Davydenko O.G. 1998. A method for isolation of chloroplast DNA and mitochondrial DNA from sunflower. Plant Mol. Biol. Rep. 16, 183–189.

    Article  Google Scholar 

  9. Scott K.D., Playford J. 1996. DNA Extraction technique for PCR in rainforest species. BioTechniques. 20, 974–978.

    PubMed  CAS  Google Scholar 

  10. Shepherd M., Cross M., Stokoe R.L., Scott L.J., Jones E.M. 2002. High throughput DNA extraction from forest trees. Plant Mol. Biol. Rep. 20, 425–425.

    Article  Google Scholar 

  11. Bhattacharjee R., Maria K.A., Peter A., Sunday T., Ivan I. 2004. An improved semi automated rapid method of extracting genomic DNA for molecular marker analysis in cocoa, Theobroma cacao L. Plant Mol. Biol. Rep. 22, 435a–435b.

    Article  Google Scholar 

  12. Doyle J.J., Doyle J.L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19, 11–15.

    Google Scholar 

  13. Doyle J.J., Doyle J.L. 1990. A rapid total DNA preparation procedure for fresh plant tissue. Focus. 12, 13–15.

    Google Scholar 

  14. Huang J., Ge X., Sun M. 2000. Modified CTAB protocol using a silica matrix for isolation of plant genomic DNA. BioTechniques. 28, 432–434.

    PubMed  Google Scholar 

  15. Marechal-Drouard L., Guillemaut P. 1995. A powerful but simple technique to prepare polysaccharide-free DNA quickly and without phenol extraction. Plant Mol. Biol. Rep. 13, 26–30.

    Article  CAS  Google Scholar 

  16. Suzuki Y., Makino A.A., Mae T. 2001. An efficient method for extraction of RNA from rice leaves at different ages using benzyl chloride. J. Exp. Bot. 52(360), 1575–1579.

    Article  PubMed  CAS  Google Scholar 

  17. Tanaka J., Ikeda S. 2002. Rapid and efficient DNA extraction method from various plant species using diatomaceous earth and a spin filter. Breeding Sci. 52, 151–155.

    Article  CAS  Google Scholar 

  18. Jobes D.V., Hurley D.L., Thien L.B. 1995. Plant DNA isolation: A method to efficiently remove polyphenolics, polysaccharides, and RNA. Taxon. 44, 379–386.

    Article  Google Scholar 

  19. Wang W., Tai F., Chen S. 2008. Optimizing protein extraction from plant tissues for enhanced proteomics analysis. J. Separ. Sci. 31(11), 2032–2039.

    Article  CAS  Google Scholar 

  20. Lee J., Cooper B. 2006. Alternative workflows for plant proteomic analysis. Mol. Biosyst. 2(12), 621–626.

    Article  PubMed  CAS  Google Scholar 

  21. Görg A., Obermaier C., Boguth G., Harder A., Scheibe B., Wildgruber R., Weiss W. 2000. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis. 21, 1037–1053.

    Article  PubMed  Google Scholar 

  22. Franklin W., Martin. 1982. Okra, potential multiple-purpose crop for the temperate zones and tropics. Econ. Bot. 36, 340–345.

    Article  Google Scholar 

  23. Sengkhamparn N., Verhoef R., Henk A.S., Sajjaanantakul T., Voragen A.J.G. 2009. Characterisation of cell wall polysaccharides from okra, Abelmoschus esculentus (L.) Moench. Carbohydr. Res. 344(14), 1824–1832.

    Article  PubMed  CAS  Google Scholar 

  24. Sambrook J., Russell D.W. 2001. Molecular Cloning. A Laboratory Manual, 3rd ed. Cold Spring Harbor, NY: Cold Spring Harbor Lab Press.

    Google Scholar 

  25. Church G.M., Gilbert W. 1984. Genomic sequencing. Proc. Natl. Acad. Sci. U. S. A. 81, 1991–1995.

    Article  PubMed  CAS  Google Scholar 

  26. Williams J.G.K., Kubelik A.R., Livak K.L., Rafalski J.A., Tingey S.V. 1990. DNA polymorphism amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18, 6531–6535.

    Article  PubMed  CAS  Google Scholar 

  27. Manoj-Kumar A., Kalpana-Reddy N., Luke Simon, Ramachandra Y.L. 2009. RAPD analysis of local bell pepper genotypes in relation with powdery mildew incidence and fruit yield: Managing disease by single chemical molecule. Arch. Phytopathol. Plant Protect. 42(9), 891–901.

    Article  CAS  Google Scholar 

  28. Hurkman W.J., Tanaka C.K. 1986. Solubilization of plant membrane proteins for analysis by two-dimensional gel electrophoresis. Plant Physiol. 81, 802–806.

    Article  PubMed  CAS  Google Scholar 

  29. Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  30. Chomczynski P., Sacchi N. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanatephenol-chloroform extraction. Anal. Biochem. 162, 156–159.

    Article  PubMed  CAS  Google Scholar 

  31. Loomis W.D. 1974. Overcoming problems of phenolic and quinones in the isolation of plant enzymes and organelles. Methods Enzymol. 31, 528–545.

    Article  PubMed  CAS  Google Scholar 

  32. Harwood A.J. 1996. Basic DNA and RNA protocols. Methods Mol. Biol. 58, 3–9.

    Google Scholar 

  33. Rogstad S.H., Keane B., Keiffer C.H., Hebard F., Sisco P. 2001. DNA extraction from plants: The use of pectinase. Plant Mol. Biol. Rep. 19, 353–359.

    Article  CAS  Google Scholar 

  34. Bhatnagar S.K., Deepika A., Sanjeev Kumar. 2005. First protocol for DNA isolation in Indian charophyta. J. Biol. Res. 3, 109–111.

    CAS  Google Scholar 

  35. Caramante M., Corrado G., Maria Monti L., Rosa Rao. 2011. Simple sequence repeats are able to trace tomato cultivars in tomato food chains. Food Control. 22, 549–554.

    Article  CAS  Google Scholar 

  36. Bardakci F. 2001. Random Amplified Polymorphic DNA (RAPD) markers. Turk. J. Biol. 25, 185–196.

    CAS  Google Scholar 

  37. Claros G.M., Francisco M., Canovas M. 1999. Experimental section: RNA isolation from plant tissues: A practical experience for biological undergraduates. Biochem. Educ. 27, 110–113.

    Article  CAS  Google Scholar 

  38. Barry R., Soloviev M. 2004. Quantitative protein profiling using antibody arrays. Proteomics. 4, 3717–3726.

    Article  PubMed  CAS  Google Scholar 

  39. Espagne C., Martinez A., Valot B., Meinnel T., Giglione C. 2007. Alternative and effective proteomic analysis in Arabidopsis. Proteomics. 7, 3788–3799.

    Article  PubMed  CAS  Google Scholar 

  40. Kalpana-Reddy N., Kumar A., Rajanna M.D., Rahiman A., Gowda B. 2009. Evaluation of maize genotypes against downy mildew (Peronosclerospora sorghi (Weston and Uppal)) and characterization of soluble seed proteins by SDS-PAGE. Arch. Phytopathol. Plant Protect. 42(12), 1126–1131.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. N. Reddy.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manoj-Kumar, A., Reddy, K.N., Manjulatha, M. et al. Polysaccharide-free nucleic acids and proteins of Abelmoschus esculentus for versatile molecular studies. Mol Biol 46, 535–541 (2012). https://doi.org/10.1134/S0026893312030065

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893312030065

Keywords

Navigation