Skip to main content
Log in

Differential regulation of MicroRNA expression in irradiated and bystander cells

  • Molecular Biology of the Cell
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The ionizing radiation (IR) induces a variety of biological effects in irradiated cells. Additionally, the irradiated cells communicate with unirradiated cells and induce changes in them through a phenomenon termed as the bystander effect. The nature of the bystander effect signal and how it impacts unirradiated cells remains to be discovered. Examination of molecular changes in bystander cells due to signals from irradiated cells could lead to the identification of the pathways underlying the bystander effect. To gain insight into the molecular pathways affected by the transmission of signal from irradiated cells to bystander cells, we monitored the microRNA (miRNA) transcriptional changes. miRNAs control gene expression at the posttranscriptional level. In previous studies from our laboratory the modulation of miRNA in irradiated human cells were identified. In the present work human lymphoblasts TK6 cells in a medium exchanged bystander effect model system were used to analyze miRNA expression alterations by employing the real time RT-PCR technology. The relative expression of several miRNAs involved in RAS, c-MYC and BCL2 gene regulation were examined. The let-7 family of miRNAs was upregulated in irradiated cells but most of these miRNAs remained repressed in bystander cells. The miR-17-3p, miR-19b, and miR-18a were upregulated in irradiated cells but were repressed in the bystander cells. The miR-17-5p, miR-142-3p, rniR-142-5p, and miR-19a were induced only for a short time in bystander cells. The miR-15a, miR-16, miR-143, miR-145, miR-155, and miR21 were upregulated in irradiated TK6 cells. While the expression of miR-15a, miR-16, miR-155, and miR-21 was repressed, the miR-143 and miR-145 expression was induced in bystander cells. These results indicate the involvement of miRNA modulation in irradiated and bystander cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

IR:

ionizing radiation

ROS:

reactive oxygen species

References

  1. Chaudhry M.A. 2006. Bystander effect: Biological endpoints and microarray analysis. Mutat. Res. 597, 98–112.

    Article  PubMed  CAS  Google Scholar 

  2. Wright E.G. 2010. Manifestations and mechanisms of non-targeted effects of ionizing radiation. Mutat. Res. 687, 28–33.

    Article  PubMed  CAS  Google Scholar 

  3. Goodhead D.T. 2010. New radiobiological, radiation risk and radiation protection paradigms. Mutat. Res. 687, 13–16.

    Article  PubMed  CAS  Google Scholar 

  4. Nagasawa H., Little J.B. 1992. Induction of sister chromatid exchanges by extremely low doses of alpha-particles. Cancer Res. 52, 6394–6396.

    PubMed  CAS  Google Scholar 

  5. Mothersill C., Seymour C. 1997. Medium from irradiated human epithelial cells but not human fibroblasts reduces the clonogenic survival of unirradiated cells. Int. J. Radiat. Biol. 71, 421–427.

    Article  PubMed  CAS  Google Scholar 

  6. Nagasawa H., Little J.B. 1999. Unexpected sensitivity to the induction of mutations by very low doses of alpha-particle radiation: Evidence for a bystander effect. Radiat. Res. 152, 552–557.

    Article  PubMed  CAS  Google Scholar 

  7. Watson G.E., Lorimore S.A., Macdonald D.A., Wright E.G. 2000. Chromosomal instability in unirradiated cells induced in vivo by a bystander effect of ionizing radiation. Cancer Res. 60, 5608–5611.

    PubMed  CAS  Google Scholar 

  8. Nagasawa H., Little J. 2002. Bystander effect for chromosomal aberrations induced in wild-type and repair deficient CHO cells by low fluences of alpha particles. Mutat. Res. 508, 121.

    Article  PubMed  CAS  Google Scholar 

  9. Zhang Y., Zhou J., Held K.D., Redmond R.W., Prise K.M., Liber H.L. 2008. Deficiencies of double-strand break repair factors and effects on mutagenesis in directly gamma-irradiated and medium-mediated bystander human lymphoblastoid cells. Radiat. Res. 169, 197–206.

    Article  PubMed  CAS  Google Scholar 

  10. Gorman S., Fox E., O’donoghue D., Sheahan K., Hyland J., Mulcahy H., Loeb L.A., O’sullivan J. 2010. Mitochondrial mutagenesis induced by tumor-specific radiation bystander effects. J. Mol. Med. 88, 701–708.

    Article  PubMed  Google Scholar 

  11. Azzam E.I., de Toledo S.M., Gooding T., Little J.B. 1998. Intercellular communication is involved in the bystander regulation of gene expression in human cells exposed to very low fluences of alpha particles. Radiat. Res. 150, 497–504.

    Article  PubMed  CAS  Google Scholar 

  12. Little J.B., Azzam E.I., de Toledo S.M., Nagasawa H. 2002. Bystander effects: Intercellular transmission of radiation damage signals. Radiat. Prot. Dosimetry. 99, 159–162.

    Article  PubMed  CAS  Google Scholar 

  13. Asur R., Balasubramaniam M., Marples B., Thomas R.A., Tucker J.D. 2010. Bystander effects induced by chemicals and ionizing radiation: Evaluation of changes in gene expression of downstream MAPK targets. Mutagenesis. 25, 271–279.

    Article  PubMed  CAS  Google Scholar 

  14. Azzam E.I., de Toledo S.M., Spitz D.R., Little J.B. 2002. Oxidative metabolism modulates signal transduction and micronucleus formation in bystander cells from alpha-particleirradiated normal human fibroblast cultures. Cancer Res. 62, 5436–5442.

    PubMed  CAS  Google Scholar 

  15. Sowa M.B., Goetz W., Baulch J.E., Pyles D.N., Dziegielewski J., Yovino S., Snyder A.R., de Toledo S.M., Azzam E.I., Morgan W.F. 2010. Lack of evidence for low-LET radiation induced bystander response in normal human fibroblasts and colon carcinoma cells. Int. J. Radiat. Biol. 86, 102–113.

    Article  PubMed  CAS  Google Scholar 

  16. Yang H., Asaad N., Held K.D. 2005. Medium-mediated intercellular communication is involved in bystander responses of X-ray-irradiated normal human fibroblasts. Oncogene. 24, 2096–2103.

    Article  PubMed  CAS  Google Scholar 

  17. Azzam E.I., de Toledo S.M., Little J.B. 2001. Direct evidence for the participation of gap junction-mediated intercellular communication in the transmission of damage signals from alpha -particle irradiated to nonirradiated cells. Proc. Natl. Acad. Sci. U. S. A. 98, 473–478.

    PubMed  CAS  Google Scholar 

  18. Seymour C.B., Mothersill C. 2000. Relative contribution of bystander and targeted cell killing to the low-dose region of the radiation dose-response curve. Radiat. Res. 153, 508–511.

    Article  PubMed  CAS  Google Scholar 

  19. Prise K.M., Belyakov O.V., Folkard M., Michael B.D. 1998. Studies of bystander effects in human fibroblasts using a charged particle microbeam. Int. J. Radiat. Biol. 74, 793–798.

    Article  PubMed  CAS  Google Scholar 

  20. Hanot M., Hoarau J., Carriere M., Angulo J.F., Khodja H. 2009. Membrane-dependent bystander effect contributes to amplification of the response to alpha-particle irradiation in targeted and nontargeted cells. Int. J. Radiat. Oncol. Biol. Phys. 75, 1247–1253.

    Article  PubMed  CAS  Google Scholar 

  21. Law Y.L., Wong T.P., Yu K.N. 2010. Influence of catechins on bystander responses in CHO cells induced by alpha-particle irradiation. Appl. Radiat. Isot. 68, 726–729.

    Article  PubMed  CAS  Google Scholar 

  22. Fabian M.R., Sonenberg N., Filipowicz W. 2010. Regulation of mRNA translation and stability by microRNAs. Annu. Rev. Biochem. 79, 351–379.

    Article  PubMed  CAS  Google Scholar 

  23. Yekta S., Shih I.H., Bartel D.P. 2004. MicroRNA-directed cleavage of HOXB8 mRNA. Science. 304, 594–596.

    Article  PubMed  CAS  Google Scholar 

  24. Kai Z.S., Pasquinelli A.E. 2010. MicroRNA assassins: Factors that regulate the disappearance of miRNAs. Nature Struct. Mol. Biol. 17, 5–10.

    Article  CAS  Google Scholar 

  25. Pillai R.S., Bhattacharyya S.N., Artus C.G., Zoller T., Cougot N., Basyuk E., Bertrand E., Filipowicz W. 2005. Inhibition of translational initiation by Let-7 microRNA in human cells. Science. 309, 1573–1576.

    Article  PubMed  CAS  Google Scholar 

  26. Lim L.P., Lau N.C., Garrett-Engele P., Grimson A., Schelter J.M., Castle J., Bartel D.P., Linsley P.S., Johnson J.M. 2005. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 433, 769–773.

    Article  PubMed  CAS  Google Scholar 

  27. Chekulaeva M., Filipowicz W. 2009. Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells. Curr. Opin. Cell Biol. 21, 452–460.

    Article  PubMed  CAS  Google Scholar 

  28. John B., Enright A.J., Aravin A., Tuschl T., Sander C., Marks D.S. 2004. Human microRNA targets. PLoS Biol. 2, e363.

    Article  PubMed  Google Scholar 

  29. Chaudhry M.A., Kreger B., Omaruddin R.A. 2010. Transcriptional modulation of micro-RNA in human cells differing in radiation sensitivity. Int. J. Radiat. Biol. 86, 569–583.

    Article  PubMed  CAS  Google Scholar 

  30. Livak K.J., Schmittgen T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25, 402–408.

    Article  PubMed  CAS  Google Scholar 

  31. Abdullaev S.A., Antipova V.N., Gaziev A.I. 2009. Extracellular mutant mitochondrial DNA content is sharply elevated in the blood plasma of irradiated mice. Mol. Biol. (Moscow). 43, 990–996.

    Article  CAS  Google Scholar 

  32. Chaudhry M.A. 2009. Real-time PCR analysis of micro-RNA expression in ionizing radiation-treated cells. Cancer Biother. Radiopharm. 24, 49–56.

    Article  PubMed  CAS  Google Scholar 

  33. Chaudhry M.A., Sachdeva H., Omaruddin R.A. 2010. Radiation-induced micro-RNA modulation in glioblastoma cells differing in DNA-repair pathways. DNA Cell Biol. 29, 553–561.

    Article  PubMed  CAS  Google Scholar 

  34. Johnson S.M., Grosshans H., Shingara J., Byrom M., Jarvis R., Cheng A., Labourier E., Reinert K.L., Brown D., Slack F.J. 2005. RAS is regulated by the let-7 microRNA family. Cell. 120, 635–647.

    Article  PubMed  CAS  Google Scholar 

  35. Goodsell D.S. 1999. The molecular perspective: The RAS oncogene. Oncologist. 4, 263–264.

    PubMed  CAS  Google Scholar 

  36. Weidhaas J.B., Babar I., Nallur S.M., Trang P., Roush S., Boehm M., Gillespie E., Slack F.J. 2007. MicroRNAs as potential agents to alter resistance to cytotoxic anticancer therapy. Cancer Res. 67, 11111–11116.

    Article  PubMed  CAS  Google Scholar 

  37. Xi Y., Edwards J.R., Ju J. 2007. Investigation of miRNA biology by bioinformatic tools and impact of miRNAs in colorectal cancer-regulatory relationship of c-Myc and p53 with miRNAs. Cancer Inform. 3, 245–253.

    PubMed  Google Scholar 

  38. He L., Thomson J.M., Hemann M.T., Hernando-Monge E., Mu D., Goodson S., Powers S., Cordon-Cardo C., Lowe S.W., Hannon G.J., Hammond S.M. 2005. A microRNA polycistron as a potential human oncogene. Nature. 435, 828–833.

    Article  PubMed  CAS  Google Scholar 

  39. Fontana L., Fiori M.E., Albini S., Cifaldi L., Giovinazzi S., Forloni M., Boldrini R., Donfrancesco A., Federici V., Giacomini P., Peschle C., Fruci D. 2008. Antagomir-17-5p abolishes the growth of therapy-resistant neuroblastoma through p21 and BIM. PLoS One. 3, e2236.

    Article  PubMed  Google Scholar 

  40. Iwakawa M., Hamada N., Imadome K., Funayama T., Sakashita T., Kobayashi Y., Imai T. 2008. Expression profiles are different in carbon ion-irradiated normal human fibroblasts and their bystander cells. Mutat. Res. 642, 57–67.

    Article  PubMed  CAS  Google Scholar 

  41. Cimmino A., Calin G.A., Fabbri M., Iorio M.V., Ferracin M., Shimizu M., Wojcik S.E., Aqeilan R.I., Zupo S., Dono M., Rassenti L., Alder H., Volinia S., Liu C.G., Kipps T.J., Negrini M., Croce C.M. 2005. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl. Acad. Sci. U. S. A. 102, 13944–13949.

    Article  PubMed  CAS  Google Scholar 

  42. Chung E.Y., Dews M., Cozma D., Yu D., Wentzel E.A., Chang T.C., Schelter J.M., Cleary M.A., Mendell J.T., Thomas-Tikhonenko A. 2008. c-Myb oncoprotein is an essential target of the dleu2 tumor suppressor microRNA cluster. Cancer Biol. Ther. 7, 1758–1764.

    Article  PubMed  CAS  Google Scholar 

  43. Akerman G.S., Rosenzweig B.A., Domon O.E., Tsai C.A., Bishop M.E., Mcgarrity L.J., Macgregor J.T., Sistare F.D., Chen J.J., Morris S.M. 2005. Alterations in gene expression profiles and the DNA-damage response in ionizing radiation-exposed TK6 cells. Environ. Mol. Mutagen. 45, 188–205.

    Article  PubMed  CAS  Google Scholar 

  44. Shahi P., Loukianiouk S., Bohne-Lang A., Kenzelmann M., Kuffer S., Maertens S., Eils R., Grone H.J., Gretz N., Brors B. 2006. Argonaute: A database for gene regulation by mammalian microRNAs. Nucleic Acids Res. 34, D115–D118.

    Article  PubMed  CAS  Google Scholar 

  45. Yanaihara N., Caplen N., Bowman E., Seike M., Kumamoto K., Yi M., Stephens R.M., Okamoto A., Yokota J., Tanaka T., Calin G.A., Liu C.G., Croce C.M., Harris C.C. 2006. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell. 9, 189–198.

    Article  PubMed  CAS  Google Scholar 

  46. Ghandhi S.A., Yaghoubian B., Amundson S.A. 2008. Global gene expression analyses of bystander and alpha particle irradiated normal human lung fibroblasts: Synchronous and differential responses. BMC Med. Genomics. 1, 63.

    Article  PubMed  Google Scholar 

  47. Herok R., Konopacka M., Polanska J., Swierniak A., Rogolinski J., Jaksik R., Hancock R., Rzeszowska-Wolny J. 2010. Bystander effects induced by medium from irradiated cells: Similar transcriptome responses in irradiated and bystander K562 cells. Int. J. Radiat. Oncol. Biol. Phys. 77, 244–252.

    Article  PubMed  CAS  Google Scholar 

  48. Rzeszowska-Wolny J., Herok R., Widel M., Hancock R. 2009. X-irradiation and bystander effects induce similar changes of transcript profiles in most functional pathways in human melanoma cells. DNA Repair (Amsterdam). 8, 732–738.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Chaudhry.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaudhry, M.A., Omaruddin, R.A. Differential regulation of MicroRNA expression in irradiated and bystander cells. Mol Biol 46, 569–578 (2012). https://doi.org/10.1134/S0026893312030041

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893312030041

Keywords

Navigation