Skip to main content
Log in

Differential expression of microRNA-2b with potential target coding P25 in the fifth instar larvae posterior silk gland of the silkworm

  • Molecular Biology of the Cell
  • Published:
Molecular Biology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

MicroRNAs (miRNAs) are a class of non-protein coding small RNAs that regulate a gene expression at the post-transcriptional level. Using in silico screening, we found that the 3′-untranslated regions of the P25 gene mRNA are perfectly complementary to nucleotides 2–8 at the 5′ end of the miRNA-2b (miR-2b). The expression of miR-2b and the P25 gene in posterior silk gland of the fifth instar larval silkworm was investigated using real-time PCR detection method. The results indicated that expression of the P25 gene was very high in the posterior silk gland during the fifth instar larvae, whereas a level of miR-2b sharply decreased until reaching the lowest one on the 8th day. The expression patterns of miR-2b and P25 gene indicate that miR-2b might act as a fine-tuning regulator of expression of the P25 gene at the post-transcriptional level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambros V. 2004. The functions of animal microRNAs. Nature. 431, 350–355.

    Article  PubMed  CAS  Google Scholar 

  2. Lee R.C., Feinbaum R.L., Ambros V. 1993. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 75, 843–854.

    Article  PubMed  CAS  Google Scholar 

  3. Brennecke J., Stark A., Russell R.B., Cohen S.M. 2005. Principles of microRNA-target recognition. PLoS Biol. 3, e85.

    Article  PubMed  Google Scholar 

  4. Huang Y., Zou Q., Wang S.P., Tang S.M., Zhang G.Z., Shen X.J. 2010. The discovery approaches and detection methods of microRNAs. Mol. Biol. Rep. doi: 10.1007/s11033-010-0532-1.

  5. He L., Hannon G.J. 2004. MicroRNAs: small RNAs with a big role in gene regulation. Nature Rev. Genet. 5, 522–531.

    Article  PubMed  CAS  Google Scholar 

  6. Lewis B.P., Burge C.B., Bartel D.P. 2005. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 120, 15–20.

    Article  PubMed  CAS  Google Scholar 

  7. Huang Y., Shen X.J., Zou Q., Wang S.P., Tang S.M., Zhang G.Z. 2010. Biological functions of microRNAs: A review. J. Physiol. Biochem. doi: 10.1007/s11033-010-0532-1.

  8. Couble P., Moine A., Garel A., Prudhomme J.C. 1983. Developmental variations of a nonfibroin mRNA of Bombyx mori silkgland, encoding for a low-molecular-weight silk protein. Dev. Biol. 97, 398–407.

    Article  PubMed  CAS  Google Scholar 

  9. Sprague K.U. 1975. The Bombyx mori silk proteins: characterization of large polypeptides. Biochemistry. 14, 925–931.

    Article  PubMed  CAS  Google Scholar 

  10. Yamaguchi K., Kikuchi Y., Takagi T., Kikuchi A., Oyama F. 1989. Primary structure of the silk fibroin light chain determined by cDNA sequencing and peptide analysis. J. Mol. Biol. 210, 127–139.

    Article  PubMed  CAS  Google Scholar 

  11. Kimura K., Oyama F., Ueda H., Mizuno S., Shimura K. 1985. Molecular cloning of the fibroin light chain complementary DNA and its use in the study of the expression of the light chain gene in the posterior silk gland of Bombyx mori. Experientia. 41, 1167–1171.

    Article  PubMed  CAS  Google Scholar 

  12. Inoue S., Tanaka K., Arisaka F., Kimura S., Ohtomo K. 2000. Silk fibroin of Bombyx mori is secreted, assembling a high molecular mass elementary unit consisting of H-chain, L-chain, and P25, with a 6: 6: 1 molar ratio. J. Biol. Chem. 275, 40517–40528.

    Article  PubMed  CAS  Google Scholar 

  13. Grzelak K. 1995. Control of expression of silk protein genes. Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 110, 671–681.

    Article  CAS  Google Scholar 

  14. Okamoto H., Ishikawa E., Suzuki Y. 1982. Structural analysis of sericin genes: Homologies with fibroin gene in the 5′ flanking nucleotide sequences. J. Biol. Chem. 257, 15192–15199.

    PubMed  CAS  Google Scholar 

  15. Cao J., Tong C., Wu X., Lv J., Yang Z. 2008. Identification of conserved microRNAs in Bombyx mori (silk-worm) and regulation of fibroin L chain production by microRNAs in heterologous system. Insect. Biochem. Mol. Biol. 38, 1066–1071.

    CAS  Google Scholar 

  16. Huang Y., Zou Q., Song H., Song F., Wang L., Zhang G., Shen X. 2010. A study of miRNAs targets prediction and experimental validation. Protein Cell. 1, 979–986.

    Article  PubMed  CAS  Google Scholar 

  17. Min H., Yoon S. 2010. Got target? Computational methods for microRNA target prediction and their extension. Exp. Mol. Med. 42, 233–244.

    Article  PubMed  CAS  Google Scholar 

  18. Mendes N.D., Freitas A.T., Sagot M.F. 2009. Current tools for the identification of miRNA genes and their targets. Nucleic Acids Res. 37, 2419–2433.

    Article  PubMed  CAS  Google Scholar 

  19. Rehmsmeier M., Steffen P., Hochsmann M., Giegerich R. 2004. Fast and effective prediction of microRNA/target duplexes. RNA. 10, 1507–1517.

    Article  PubMed  CAS  Google Scholar 

  20. Miranda K.C., Huynh T., Tay Y., Ang Y.S., Tam W.L. 2006. A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell. 126, 1203–1217.

    Article  PubMed  CAS  Google Scholar 

  21. Yu X., Zhou Q., Li S.C., Luo Q., Cai Y. 2008. The silkworm (Bombyx mori) microRNAs and their expressions in multiple developmental stages. PLoS One. 3, e2997.

    Article  PubMed  Google Scholar 

  22. Schmittgen T.D., Livak K.J. 2008. Analyzing real-time PCR data by the comparative C(T) method. Nature Protoc. 3, 1101–1108.

    Article  CAS  Google Scholar 

  23. Mardanova E.S., Zamchuk L.A., Ravin N.V. 2007. The 5′ untranslated region of the maize alcohol dehydrogenase gene provides efficient translation of mRNA in plants under stress conditions. Mol. Biol. (Moscow). 41, 914–919.

    Article  CAS  Google Scholar 

  24. Lai E.C., Tomancak P., Williams R.W., Rubin G.M. 2003. Computational identification of Drosophila microRNA genes. Genome Biol. 4, R42.

    Article  PubMed  Google Scholar 

  25. Lewis B.P., Shih I.H., Jones-Rhoades M.W., Bartel D.P., Burge C.B. 2003. Prediction of mammalian microRNA targets. Cell. 115, 787–798.

    Article  PubMed  CAS  Google Scholar 

  26. Datta A., Ghosh A.K., Kundu S.C. 2001. Differential expression of the fibroin gene in developmental stages of silkworm, Antheraea mylitta (Saturniidae). Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 129, 197–204.

    Article  CAS  Google Scholar 

  27. Liu S., Zhang L., Li, Q., Zhao P., Duan J., Cheng D., Xiang Z., Xia Q. 2009. MicroRNA expression profiling during the life cycle of the silkworm (Bombyx mori). BMC Genomics. 10, 455.

    Article  PubMed  Google Scholar 

  28. Chaudhuri K., Chatterjee R. 2007. MicroRNA detection and target prediction: Integration of computational and experimental approaches. DNA Cell Biol. 26, 321–337.

    Article  PubMed  CAS  Google Scholar 

  29. Li L., Xu J., Yang D., Tan X., Wang H. 2010. Computational approaches for microRNA studies: A review. Mamm. Genome. 21, 1–12.

    Article  PubMed  CAS  Google Scholar 

  30. Sethupathy P., Megraw M., Hatzigeorgiou A.G. 2006. A guide through present computational approaches for the identification of mammalian microRNA targets. Nature Methods. 3, 881–886.

    Article  PubMed  CAS  Google Scholar 

  31. Xia W., Cao G., Shao N. 2009. Progress in miRNA target prediction and identification. Sci. China C Life Sci. 52, 1123–1130.

    Article  PubMed  CAS  Google Scholar 

  32. Vasudevan S., Tong Y., Steitz J.A. 2007. Switching from repression to activation: microRNAs can up-regulate translation. Science. 318, 1931–1934.

    Article  PubMed  CAS  Google Scholar 

  33. Vasudevan S., Steitz J.A. 2007. AU-rich-element-mediated upregulation of translation by FXR1 and argonaute 2. Cell. 128, 1105–1118.

    Article  PubMed  CAS  Google Scholar 

  34. Buchan J.R., Parker R. 2007. The two faces of miRNA. Science. 318, 1877–1878.

    Article  PubMed  CAS  Google Scholar 

  35. Ason B., Darnell D.K., Wittbrodt B., Berezikov E., Kloosterman W.P. 2006. Differences in vertebrate microRNA expression. Proc. Natl. Acad. Sci. U. S. A. 103, 14385–14389.

    Article  PubMed  CAS  Google Scholar 

  36. Aboobaker A.A., Tomancak P., Patel N., Rubin G.M., Lai E.C. 2005. Drosophila microRNAs exhibit diverse spatial expression patterns during embryonic development. Proc. Natl. Acad. Sci. U. S. A. 102, 18017–18022.

    Article  PubMed  CAS  Google Scholar 

  37. Lagos-Quintana M., Rauhut R., Yalcin A., Meyer J., Lendeckel W. 2002. Identification of tissue-specific microRNAs from mouse. Curr. Biol. 12, 735–739.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Jia Shen.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Y., Zou, Q., Shen, X.J. et al. Differential expression of microRNA-2b with potential target coding P25 in the fifth instar larvae posterior silk gland of the silkworm. Mol Biol 45, 576–581 (2011). https://doi.org/10.1134/S0026893311040133

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893311040133

Keywords

Navigation