Skip to main content
Log in

A structural pocket mutation of pRb increases its affinity for E2F4, which is coupled with activation of muscle differentiation

  • Cell Molecular Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Coordination of proliferation and differentiation in cells committed to muscle fate requires the interaction of the retinoblastoma gene product (pRb) with transcription factors of the E2F family, pRb having different affinities for distinct E2Fs. It was found that pRb carrying a small deletion at the end of the T antigen-binding region (ΔS/N) and unable to interact with the SV40 large T antigen could induce an acute cell cycle block, stable prolongation of the cell cycle in G0/G1 and G2/M phases, and suppression of the growth of tumor cells. ΔS/N showed increased affinity for E2F4, bound hyperphosphorylated forms of E2F4, and induced its nuclear compartmentalization. The ability of ΔS/N to form complexes with E2F4 on DNA was associated with an increased formation of “free” E2F4 and trans-suppression of a specific reporter through preferential binding to E2F4, but not to E2F1. Stable expression of ΔS/N in multipotent fibroblasts promoted early muscle commitment. It was assumed that a mutation in the T antigen-binding region increases pRb affinity for E2F4 combined with activation of muscle differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PCR:

polymerase chain reaction

pRb:

product of gene of retinoblastome

BrdU:

bromdeoxyuridine

CdK:

cyclin-dependent kinase

EMSA:

method of shift of electrophoretic mobility in gel

FCS:

fetal serum of cattle

PBS:

phosphate buffer

BSA:

bovine serum albumin

pp-E2F:

comlex “pocket” proteins-E2F-DNA

pp-E2F:

comlex “pocket” proteins E2F-cyclin E-A/Cdk2-DNA

SDS-PAGE:

electrophoresis with sodium dodecylsulfate in polyacrylamide gel

References

  1. Skapek S.X., Pan Y.R., Lee E.Y. 2006. Regulation of cell lineage specification by the retinoblastoma tumor suppressor. Oncogene. 25, 268–5276.

    Article  Google Scholar 

  2. Otterson G.A., Chen W., Coxon A.B., et al. 1997. Incomplete penetrance of familial retinoblastoma linked to germ-line mutations that result in partial loss of RB function. Proc. Natl. Acad. Sci. USA. 94, 12036–12040.

    Article  CAS  PubMed  Google Scholar 

  3. Sellers W.R., Novitch B.G., Miyake S., et al. 1998. Stable binding to E2F is not required for the retinoblastoma protein to activate transcription, promote differentiation, and suppress tumor cell growth. Genes Dev. 12, 95–106.

    Article  CAS  PubMed  Google Scholar 

  4. Frolov M.V., Dyson N.J. 2004. Molecular mechanisms of E2F-dependent activation and pRB-mediated repression. J. Cell Sci. 117, 2173–2181.

    Article  CAS  PubMed  Google Scholar 

  5. Brown V.D., Gallie B.L. 1999. Cumulative effect of phosphorylation of pRB on regulation of E2F activity. Mol. Cell. Biol. 19, 3246–3256.

    CAS  PubMed  Google Scholar 

  6. Lee J.O., Russo A.A., Pavletich N.P. 1998. Structure of the retinoblastoma tumour-suppressor pocket domain bound to a peptide from HPV E7. Nature. 391, 859–865.

    Article  CAS  PubMed  Google Scholar 

  7. Rubin S.M., Gall A.L., Zheng N., et al. 2005. Structure of the Rb C-terminal domain bound to E2F1-DP1: A mechanism for phosphorylation-induced E2F release. Cell. 123, 1093–1106.

    Article  CAS  PubMed  Google Scholar 

  8. Harbour J.W., Luo R.X., Dei Santi A., et al. 1999. Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell. 98, 859–869.

    Article  CAS  PubMed  Google Scholar 

  9. Brown V.D., Gallie B.L. 2002. The B-domain lysine patch of pRB is required for binding to large T antigen and release of E2F by phosphorylation. Mol. Cell Biol. 22, 1390–1401.

    Article  CAS  PubMed  Google Scholar 

  10. Blais A., Dynlacht B.D. 2007. E2F-associated chromatin modifiers and cell cycle control. Curr. Opin. Cell. Biol. 19, 658–662.

    Article  CAS  PubMed  Google Scholar 

  11. Shan B., Durfee T., Lee W.H. 1996. Disruption of RB/E2F-1 interaction by single point mutations in E2F-1 enhances S-phase entry and apoptosis. Proc. Natl. Acad. Sci. USA. 93, 679–684.

    Article  CAS  PubMed  Google Scholar 

  12. Moberg K., Starz M.A., Lees J.A. 1996. E2F-4 switches from p130 to p107 and pRb in response to cell cycle reentry. Mol. Cell Biol. 16, 1436–1449.

    CAS  PubMed  Google Scholar 

  13. Popov B., Chang L-S., Serikov V. 2005. Cell cycle-related transformation of the E2F4-p130 repressor complex. Biochem. Biophys. Res. Commun. 336, 762–769.

    Article  CAS  PubMed  Google Scholar 

  14. Black B.L., Molkentin J.D., Olson E.N. 1998. Multiple roles for the MyoD basic region in transmission of transcriptional activation signals and interaction with MEF2. Mol. Cell Biol. 18, 69–77.

    CAS  PubMed  Google Scholar 

  15. Novitch B.G., Mulligan G.J., Jacks T., et al. 1996. Skeletal muscle cells lacking the retinoblastoma protein display defects in muscle gene expression and accumulate in S and G2 phases of the cell cycle. J. Cell Biol. 135, 441–456.

    Article  CAS  PubMed  Google Scholar 

  16. Huh M.S., Parker M.H., Scime A., et al. 2004. Rb is required for progression through myogenic differentiation but not maintenance of terminal differentiation. J. Cell Biol. 166, 865–876.

    Article  CAS  PubMed  Google Scholar 

  17. Hamel P.A., Cohen B.L., Sorce L.M., et al. 1990. Hyperphosphorylation of the retinoblastoma gene product is determined by domains outside the simian virus 40 large-T-antigen-binding regions. Mol. Cell Biol. 10, 6586–6595.

    CAS  PubMed  Google Scholar 

  18. Hamel P.A., Gill R.M., Phillips R.A. et al. 1992. Regions controlling hyperphosphorylation and conformation of the retinoblastoma gene product are independent of domains required for transcriptional repression. Oncogene. 7, 693–701.

    CAS  PubMed  Google Scholar 

  19. Constantinides P.G., Jones P.A., Gevers W. 1977. Functional striated muscle cells from non-myoblast precursors following 5-azacytidine treatment. Nature. 267, 364–366.

    Article  CAS  PubMed  Google Scholar 

  20. Muller H., Moroni M.C., Vigo E., et al. 1997. Induction of S-phase entry by E2F transcription factors depends on their nuclear localization. Mol. Cell Biol. 17, 5508–5520.

    CAS  PubMed  Google Scholar 

  21. Vairo G., Livingston D.M., Ginsberg D. 1995. Functional interaction between E2F-4 and p130: Evidence for distinct mechanisms underlying growth suppression by different retinoblastoma protein family members. Genes Dev. 9, 869–881.

    Article  CAS  PubMed  Google Scholar 

  22. Dick F.A. 2007. Structure-function analysis of the retinoblastoma tumor suppressor protein: Is the whole a sum of its parts? Cell Div. 2, 26–41.

    Article  PubMed  Google Scholar 

  23. Lee C., Chang J.H., Lee H.S., et al. 2002. Structural basis for the recognition of the E2F transactivation domain by the retinoblastoma tumor suppressor. Genes Dev. 16, 3199–3212.

    Article  CAS  PubMed  Google Scholar 

  24. Sun H., Chang Y., Schweers B., et al. 2006. An E2F binding-deficient Rb1 protein partially rescues developmental defects associated with Rb1 nullizygosity. Mol. Cell Biol. 26, 1527–1537.

    Article  CAS  PubMed  Google Scholar 

  25. Popov B.V., Kulakova I.A., Popov N.B., et al. 1998. Phosphorylation pattern of the retinoblastoma gene product in stable murine and human cell lines. Ontogenez. 29, 245–253.

    CAS  PubMed  Google Scholar 

  26. Ren B., Cam H., Takahashi Y., et al. 2002. E2F integrates cell cycle progression with DNA repair, replication, and G2/M checkpoints. Genes Dev. 16, 245–256.

    Article  CAS  PubMed  Google Scholar 

  27. Hateboer G., Kerkhoven R.M., Shvarts A., et al. 1996. Degradation of E2F by the ubiquitin-proteasome pathway: Regulation by retinoblastoma family proteins and adenovirus transforming proteins. Genes Dev. 10, 2960–2970.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. V. Popov.

Additional information

Original Russian Text © B.V. Popov, S.M. Watt, J.M. Rosanov, L.-S. Chang, 2010, published in Molekulyarnaya Biologiya, 2010, Vol. 44, No. 2, pp. 323–334.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popov, B.V., Watt, S.M., Rosanov, J.M. et al. A structural pocket mutation of pRb increases its affinity for E2F4, which is coupled with activation of muscle differentiation. Mol Biol 44, 287–297 (2010). https://doi.org/10.1134/S0026893310020147

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893310020147

Key words

Navigation