Skip to main content
Log in

Transcriptional inhibition of the human papilloma virus reactivates tumor suppressor p53 in cervical carcinoma cells

  • Cell Molecular Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Inactivation of tumor suppressor p53 accompanies the majority of human malignancies. Restoration of p53 function causes death of tumor cells and is potentially suitable for gene therapy of cancer. In cervical carcinoma, human papilloma virus (HPV) E6 facilitates proteasomal degradation of p53. Hence, a possible approach to p53 reactivation is the use of small molecules suppressing the function of viral proteins. HeLa cervical carcinoma cells (HPV-18) with a reporter construct containing the β-galactosidase gene under the control of a p53-responsive promoter were used as a test system to screen a library of small molecules for restoration of the transcriptional activity of p53. The effect of the two most active compounds was studied with cell lines differing in the state of p53-dependent signaling pathways. The compounds each specifically activated p53 in cells expressing HPV-18 and, to a lesser extent, HPV-16 and exerted no effect on control p53-negative cells or cells with the intact p53-dependent pathways. Activation of p53 in cervical carcinoma cells was accompanied by induction of p53-dependent CDKN1 (p21), inhibition of cell proliferation, and induction of apoptosis. In addition, the two compounds dramatically decreased transcription of the HPV genome, which was assumed to cause p53 reactivation. The compounds were low-toxic for normal cells and can be considered as prototypes of new anticancer drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kopnin B.P. 2000. Targets for oncogenes and tumor suppressors: A key to understanding basic mechanisms of carcinogenesis. Biokhimiya. 65, 5–33.

    Google Scholar 

  2. Chumakov P.M. The function of p53 gene: A life-or-death choice. Biokhimiya. 65, 34–47.

  3. Baker S.J., Fearon E.R., Nigro J.M., Hamilton S.R., Preisinger A.C., Jessup J.M., vanTuinen P., Ledbetter D.H., Barker D.F., Nakamura Y., White R., Vogelstein B. 1989. Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science. 244, 217–221.

    Article  PubMed  CAS  Google Scholar 

  4. Hollstein M., Hergenhahn M., Yang Q., Bartsch H., Wang Z.Q., Hainaut P. 1999. New approaches to understanding p53 gene tumor mutation spectra. Mutat Res. 431, 199–209.

    PubMed  CAS  Google Scholar 

  5. Levine A.J., Perry M.E., Chang A., Silver A., Dittmer D., Wu M., Welsh D. 1994. The 1993 Walter Hubert Lecture: The role of the p53 tumour-suppressor gene in tumorigenesis. Br. J. Cancer. 69, 409–416.

    PubMed  CAS  Google Scholar 

  6. Mantovani F., Banks L. 2001. The human papillomavirus E6 protein and its contribution to malignant progression. Oncogene. 20, 7874–7887.

    Article  PubMed  CAS  Google Scholar 

  7. Lane D.P., Lain S. 2002. Therapeutic exploitation of the p53 pathway. Trends Mol. Med. 8, S38–S42.

    Article  PubMed  CAS  Google Scholar 

  8. McCormick F. 2003. Cancer-specific viruses and the development of ONYX-015. Cancer Biol. Ther. 2, S157–S160.

    PubMed  CAS  Google Scholar 

  9. Vecil G.G., Lang F.F. 2003. Clinical trials of adenoviruses in brain tumors: A review of Ad-p53 and oncolytic adenoviruses. J. Neurooncol. 65, 237–246.

    Article  PubMed  Google Scholar 

  10. Foster B.A., Coffey H.A., Morin M.J., Rastinejad F. 1999. Pharmacological rescue of mutant p53 conformation and function. Science. 286, 2507–2510.

    Article  PubMed  CAS  Google Scholar 

  11. Bykov V.J., Issaeva N., Shilov A., Hultcrantz M., Pugacheva E., Chumakov P., Bergman J., Wiman K.G., Selivanova G. 2002. Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nat. Med. 8, 282–288.

    Article  PubMed  CAS  Google Scholar 

  12. zur Hausen H. 1996. Papillomavirus infections: A major cause of human cancers. Biochim. Biophys. Acta. 1288, F55–F78.

    PubMed  Google Scholar 

  13. Scheffner M., Werness B.A., Huibregtse J.M., Levine A.J., Howley P.M. 1990. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell. 63, 1129–1136.

    Article  PubMed  CAS  Google Scholar 

  14. Ashcroft M., Vousden K.H. 1999. Regulation of p53 stability. Oncogene. 18, 7637–7643.

    Article  PubMed  CAS  Google Scholar 

  15. Schneider-Gadicke A., Schwarz E. 1986. Different human cervical carcinoma cell lines show similar transcription patterns of human papillomavirus type 18 early genes. EMBO J. 5, 2285–2292.

    PubMed  CAS  Google Scholar 

  16. Razorenova O.V., Agapova L.S., Budanov A.V., Ivanov A.V., Strunina S.M., Chumakov P.M. 2005. Retroviral reporter systems for assessing the activity of stress-inducible signal transduction pathways controlled by the p53, HIF-1, and HSF-1 transcription factors. Mol. Biol. 39, 286–293.

    CAS  Google Scholar 

  17. Strunina S.M., Ivanov A,V., Chumakov P.M. 2003. Construction of a reporter system for fine assessment of the p53 activity in cultured cells, Mol. Biol. 37, 1007–1018.

    Article  CAS  Google Scholar 

  18. Grignani F., Kinsella T., Mencarelli A., Valtieri M., Riganelli D., Lanfrancone L., Peschle C., Nolan G.P., Pelicci P.G. 1998. High-efficiency gene transfer and selection of human hematopoietic progenitor cells with a hybrid EBV/retroviral vector expressing the green fluorescence protein. Cancer Res. 58, 14–19.

    PubMed  CAS  Google Scholar 

  19. Pietenpol J.A., Tokino T., Thiagalingam S., el-Deiry W.S., Kinzler K.W., Vogelstein B. 1994. Sequence-specific transcriptional activation is essential for growth suppression by p53. Proc. Natl. Acad. Sci. USA. 91, 1998–2002.

    Article  PubMed  CAS  Google Scholar 

  20. Komarova E.A., Chernov M.V., Franks R., Wang K., Armin G., Zelnick C.R., Chin D.M., Bacus S.S., Stark G.R., Gudkov A.V. 1997. Transgenic mice with p53-responsive lacZ: p53 activity varies dramatically during normal development and determines radiation and drug sensitivity in vivo. EMBO J. 16, 1391–1400.

    Article  PubMed  CAS  Google Scholar 

  21. Hietanen S., Lain S., Krausz E., Blattner C., Lane D.P. 2000. Activation of p53 in cervical carcinoma cells by small molecules. Proc. Natl. Acad. Sci. USA. 97, 8501–8506.

    Article  PubMed  CAS  Google Scholar 

  22. el-Deiry W.S., Kern S.E., Pietenpol J.A., Kinzler K.W., Vogelstein B. 1992. Definition of a consensus binding site for p53. Nat. Genet. 1, 45–49.

    Article  PubMed  CAS  Google Scholar 

  23. Kern S.E., Kinzler K.W., Bruskin A., Jarosz D., Friedman P., Prives C., Vogelstein B. 1991. Identification of p53 as a sequence-specific DNA-binding protein. Science. 252, 1708–1711.

    Article  PubMed  CAS  Google Scholar 

  24. Funk W.D., Pak D.T., Karas R.H., Wright W.E., Shay J.W. 1992. A transcriptionally active DNA-binding site for human p53 protein complexes. Mol. Cell. Biol. 12, 2866–2871.

    PubMed  CAS  Google Scholar 

  25. el-Deiry W.S., Tokino T., Velculescu V.E., Levy D.B., Parsons R., Trent J.M., Lin D., Mercer W.E., Kinzler K.W., Vogelstein B. 1993. WAF1, a potential mediator of p53 tumor suppression. Cell. 75, 817–825.

    Article  PubMed  CAS  Google Scholar 

  26. Razorenova O.V., Ivanov A.V., Budanov A.V., Chumakov P.M. 2005. Virus-based reporter systems for monitoring transcriptional activity of hypoxia-inducible factor 1. Gene. 350, 89–98.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © D.V. Kochetkov, G.V. Ilyinskaya, P.G. Komarov, E. Strom, L.S. Agapova, A.V. Ivanov, A.V. Budanov, E.I. Frolova, P.M. Chumakov, 2007, published in Molekulyarnaya Biologiya, 2007, Vol. 41, No. 3, pp. 515–523.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kochetkov, D.V., Ilyinskaya, G.V., Komarov, P.G. et al. Transcriptional inhibition of the human papilloma virus reactivates tumor suppressor p53 in cervical carcinoma cells. Mol Biol 41, 459–466 (2007). https://doi.org/10.1134/S0026893307030120

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893307030120

Key words

Navigation