Skip to main content
Log in

Stress granules: RNP-containing cytoplasmic bodies arising in stress: Structure and mechanism of organization

  • Reviews
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The review considers recent data on stress granules, which are dense RNP-containing cytoplasmic bodies that arise under stress conditions, e.g., in heat shock, UV irradiation, energy depletion, and oxidative stress. There is evidence that stress granules accumulate incomplete initiation complexes containing mRNA associated with proteins, small ribosomal subunits, and some translation initiation factors, and that stress granules are formed when cells are depleted of the ternary complex (eIF2-tRNAMet-GTP), in particular, upon eIF2A phosphorylation or a decrease in GTP. Large ribosomal subunits and the ternary complex are absent from stress granules. The structural basis of stress granules is known. It is probable, however, that RNA-binding protein TIA-1, which normally occurs in the nucleus, forms prion-like aggregates that serve as scaffolds for other components of stress granules. The cytoskeleton facilitates the accumulation of stress granule components in local cytoplasmic sites. Studies of the formation and composition of stress granules are important for a better understanding of the regulation of translation initiation in vivo and the mechanisms of the cell response to stress factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nover L., Scharf K.D., Neumann D. 1983. Formation of cytoplasmic heat shock granules in tomato cell cultures and leaves. Mol. Cell. Biol. 3, 1648–1655.

    CAS  PubMed  Google Scholar 

  2. Kedersha N., Chen S., Gilks N., Li W., Miller I.J., Stahl J., Anderson P. 2002. Evidence that ternary complex (eIF2-GTP-tRNA(i)(Met))-deficient preinitiation complexes are core constituents of mammalian stress granules. Mol. Biol. Cell. 13, 195–210.

    Article  CAS  PubMed  Google Scholar 

  3. Kimball S.R., Horetsky R.L., Ron D., Jefferson L.S., Harding H.P. 2003. Mammalian stress granules represent sites of accumulation of stalled translation initiation complexes. Am. J. Physiol. Cell Physiol. 10, 524–530.

    Google Scholar 

  4. Kedersha N.L., Gupta M., Li W., Miller I., Anderson P. 1999. RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2α to the assembly of mammalian stress granules. J. Cell Biol. 147, 1431–1442.

    Article  CAS  PubMed  Google Scholar 

  5. Kim W.J., Back S.H., Kim V., Ryu I., Jang S.K. 2005. Sequestration of TRAF2 into stress granules interrupts tumor necrosis factor signaling under stress conditions. Mol. Cell Biol. 25, 2450–2462.

    Article  CAS  PubMed  Google Scholar 

  6. Kedersha N., Anderson P. 2002. Stress granules: Sites of mRNA triage that regulate mRNA stability and translatability. Biochem. Soc. Trans. 30, 963–969.

    Article  CAS  PubMed  Google Scholar 

  7. Kedersha N., Cho M.R., Li W., Yacono P.W., Chen S., Gilks N., Golan D.E., Anderson P. 2002. Dynamic shuttling of TIA-1 accompanies the recruitment of mRNA to mammalian stress granules. J. Cell Biol. 151, 1257–1268.

    Article  Google Scholar 

  8. Kedersha N., Stoecklin G., Ayodele M., Yacono P., Lykke-Andersen J., Fitzler M.J., Scheuner D., Kaufman R.J., Golan D.E., Anderson P. 2005. Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J. Cell Biol. 169, 871–884.

    Article  CAS  PubMed  Google Scholar 

  9. Mazroui R., Huot M.E., Tremblay S., Filion C., Labelle Y., Khandjian E.W. 2002. Trapping of messenger RNA by Fragile X Mental Retardation protein into cytoplasmic granules induces translation repression. Hum. Mol. Genet. 11, 3007–3017.

    Article  CAS  PubMed  Google Scholar 

  10. Thomas M.G., Martinez Tosar L.J., Loschi M., Pasquini J.M., Correale J., Kindler S., Boccaccio G.L. 2005. Staufen recruitment into stress granules does not affect early mRNA transport in oligodendrocytes. Mol. Biol. Cell. 16, 40–420.

    Google Scholar 

  11. Murata T., Morita N., Hikita K., Kiuchi K., Kiuchi K., Kaneda N. 2005. Recruitment of mRNA-destabilizing protein TIS11 to stress granules is mediated by its zinc finger domain. Exp. Cell Res. 303, 287–299.

    Article  CAS  PubMed  Google Scholar 

  12. Tourriere H., Chebli K., Zekri L., Courselaud B., Blanchard J.M., Bertrand E., Tazi J. 2003. The RasGAP-associated endoribonuclease G3BP assembles stress granules. J. Cell Biol. 160, 823–831.

    Article  CAS  PubMed  Google Scholar 

  13. Le Guiner C., Lejeune F., Galiana D., Kister L., Breathnach R., Stevenin J., Del Gatto-Konczak F. 2001. TIA-1 and TIAR activate splicing of alternative exons with weak 5′ splice sites followed by a U-rich stretch on their own pre-mRNAs. J. Biol. Chem. 276, 40,638–40,646.

    Google Scholar 

  14. Piecyk M., Wax S., Beck A.R., Kedersha N., Gupta M., Maritim B., Chen S., Gueydan C., Kruys V., Streuli M., Anderson P. 2000. TIA-1 is a translational silencer that selectively regulates the expression of TNFα. EMBO J. 19, 4154–4163.

    Article  CAS  PubMed  Google Scholar 

  15. Dixon D.A., Balch G.C., Kedersha N., Anderson P., Zimmerman G.A., Beauchamp R.D., Prescott S.M. 2003. Regulation of cyclooxygenase-2 expression by the translational silencer TIA-1. J. Exp. Med. 198, 475–481.

    Article  CAS  PubMed  Google Scholar 

  16. Lopez de Silanes I., Galban S., Martindale J.L., Yang, X., Mazan-Mamczarz K., Indig F.E., Falco G., Zhan M., Gorospe M. 2005. Identification and functional outcome of mRNAs associated with RNA-binding protein TIA-1. Mol. Cell. Biol. 25, 9520–9531.

    Article  CAS  PubMed  Google Scholar 

  17. Gilks N., Kedersha N., Ayodele M., Shen L., Stoecklin G., Dember L.M., Anderson P. 2004. Stress granule assembly is mediated by prion-like aggregation of TIA-1. Mol. Biol. Cell. 15, 5383–5398.

    Article  CAS  PubMed  Google Scholar 

  18. Anderson P., Kedersha N. 2002. Stressful initiations. J. Cell Sci. 15, 3227–3234.

    Google Scholar 

  19. Ter-Avanesyan M.D., Dagkesamanskaya A.R., Kushnirov V.V., Smirnov V.N. 1994. The SUP35 omnipotent suppressor gene is involved in the maintenance of the non-Mendelian determinant [psi +] in the yeast Saccharomyces cerevisiae. Genetics. 137, 671–676.

    CAS  PubMed  Google Scholar 

  20. Zhouravleva G., Frolova L., Le Goff X., Le Guellec R., Inge-Vechtomov S., Kisselev L., Philippe M. 1995. Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3. EMBO J. 14, 4065–4072.

    CAS  PubMed  Google Scholar 

  21. Crosby J.S., Chefalo P.J., Yeh I., Ying S., London I.M., Leboulch P., Chen J.J. 2000. Regulation of hemoglobin synthesis and proliferation of differentiating erythroid cells by heme-regulated eIF-2α kinase. Blood. 96, 3241–3248.

    CAS  PubMed  Google Scholar 

  22. Lu L., Han A.P., Chen J.J. 2001. Translation initiation control by heme-regulated eukaryotic initiation factor 2α kinase in erythroid cells under cytoplasmic stresses. Mol. Cell. Biol. 23, 7971–7980.

    Article  Google Scholar 

  23. Mathews M.B. 1993. Viral evasion of cellular defense mechanisms: Regulation of the protein kinase DAI by RNA effectors. Semin. Virol. 4, 247–257.

    Article  CAS  Google Scholar 

  24. Harding H.P., Zhang Y., Ron D. 1999. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature. 397, 271–274.

    Article  CAS  PubMed  Google Scholar 

  25. Wu S., Hu Y., Wang J.L., Chatterjee M., Shi Y., Kaufman R.J. 2002. Ultraviolet light inhibits translation through activation of the unfolded protein response kinase PERK in the lumen of the endoplasmic reticulum. J. Biol. Chem. 277, 18,077–18,083.

    CAS  Google Scholar 

  26. Jiang H.Y., Wek R.C. 2005. GCN2 phosphorylation of eIF2α activates NF-κB in response to UV irradiation. Biochem. J. 385, 371–380.

    Article  CAS  PubMed  Google Scholar 

  27. Patel J., McLeod L.E., Vries R.G., Flynn A., Wang X., Proud C.G. 2002. Cellular stresses profoundly inhibit protein synthesis and modulate the states of phosphorylation of multiple translation factors. Eur. J. Biochem. 269, 3076–3085.

    Article  CAS  PubMed  Google Scholar 

  28. Luby-Phelps K., Castle P.E., Taylor D.L., Lanni F. 1987. Hindered diffusion of inert tracer particles in the cytoplasm of mouse 3T3 cells. Proc. Natl. Acad. Sci. USA. 84, 4910–4913.

    Article  CAS  PubMed  Google Scholar 

  29. Ivanov P.A., Chudinova E.M., Nadezhdina E.S. 2003. Disruption of microtubules inhibits cytoplasmic ribonucleoprotein stress granule formation. Exp. Cell Res. 290, 227–233.

    Article  CAS  PubMed  Google Scholar 

  30. Knowles R.B., Sabry J.H., Martone M.E., Deerinck T.J., Ellisman M.H., Bassell G.J., Kosik K.S. 1996. Translocation of RNA granules in living neurons. J. Neurosci. 16, 7812–7820.

    CAS  PubMed  Google Scholar 

  31. Carson J.H., Worboys K., Ainger K., Barbarese E. 1997. Translocation of myelin basic protein mRNA in oligodendrocytes requires microtubules and kinesin. Cell Motil. Cytoskel. 38, 318–328.

    Article  CAS  Google Scholar 

  32. Fusco D., Accornero N., Lavoie B., Shenoy S.M., Blanchard J.M., Singer R.H., Bertrand E. 2003. Single mRNA molecules demonstrate probabilistic movement in living mammalian cells. Curr. Biol. 13, 161–167.

    Article  CAS  PubMed  Google Scholar 

  33. Gowrishankar G., Winzen R., Bollig F., Ghebremedhin B., Redich N., Ritter B., Resch K., Kracht M., Holtmann H. 2005. Inhibition of mRNA deadenylation and degradation by ultraviolet light. Biol. Chem. 386, 1287–1293.

    Article  CAS  PubMed  Google Scholar 

  34. Sheth U., Parker R. 2003. Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science. 300, 753–755.

    Article  Google Scholar 

  35. Cougot N., Babajko S., Seraphin B. 2004. Cytoplasmic foci are sites of mRNA decay in human cells. J. Cell Biol. 165, 31–40.

    Article  CAS  PubMed  Google Scholar 

  36. Wilczynska A., Aigueperse C., Kress M., Dautry F., Weil D. 2005. The translational regulator CPEB1 provides a link between dcp1 bodies and stress granules. J. Cell Sci. 118, 981–992.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © P.A. Ivanov, E.S. Nadezhdina, 2006, published in Molekulyarnaya Biologiya, 2006, Vol. 40, No. 6, pp. 937–944.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanov, P.A., Nadezhdina, E.S. Stress granules: RNP-containing cytoplasmic bodies arising in stress: Structure and mechanism of organization. Mol Biol 40, 844–850 (2006). https://doi.org/10.1134/S0026893306060021

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893306060021

Key words

Navigation