Skip to main content
Log in

Highly Persistent Strains of Hydrocarbon-Oxidizing Bacteria as a Base for Increasing the Viable Cell Numbers during Long-Term Storage

  • SHORT COMMUNICATIONS
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Due to frequent and large-scale oil spills, increasing the stability of biopreparations with hydrocarbon-oxidizing bacteria (HOB), which are used for bioremediation of oil-contaminated environmental objects, is presently an important task. In the present work, a new approach for maintaining the viable HOB cell titer under unfavorable storage conditions (oxygen availability at 18−24°C) was developed, which implies constructing a strain with increased number of persister cells (High Persistence Strain, HPS). The HPS of a HOB bacterium Acinetobacter seifertii WS1 was obtained by antibiotic selection with ciprofloxacin. The share of persister cells in the population increased after 13 sequential selection cycles from 1.2 to 52%. Several months of storage of the A. seifertii HPS resulted in 2−4 times better survival than in the control. The new strain retained ability to produce high numbers of persister cells after numerous transfers without antibiotic selection. The rate of oil oxidation by the HPS culture after 4-month storage was 2−4 times higher than in the control culture. The developed approach to increasing the viable cell titer of long-term-stored cells has not been applied previously and may be used in ecobiotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Bakkeren, E., Diard, M., and Hardt, W.D., Evolutionary causes and consequences of bacterial antibiotic persistence, Nat. Rev. Microbiol., 2020, vol. 18, pp. 479–490.

    Article  CAS  Google Scholar 

  2. Balaban, N.Q., Helaine, S., Lewis, K., Ackermann, M., Aldridge, B., Andersson, D.I., Brynildsen, M.P., Bu-mann, D., Camilli, A., Collins, J.J., Dehio, C., Fortune, S., Ghigo, J.M., Hardt, W.D., Harms, A., et al., Definitions and guidelines for research on antibiotic persistence, Nat. Rev. Microbiol., 2019, vol. 17, pp. 441–448.

    Article  CAS  Google Scholar 

  3. Balaban, N.Q., Merrin, J., Chait, R., Kowalik, L., and Leibler, S., Bacterial persistence as a phenotypic switch, Science, 2004, vol. 305, pp. 1622–1625.

    Article  CAS  Google Scholar 

  4. Browning, A.P., Sharp, J.A., Mapder, T., Baker, C.M., Burrage, K., and Simpson, M.J., Persistence as an optimal hedging strategy, Biophys. J., 2020, vol. 120, pp. 133–142.

    Article  Google Scholar 

  5. Bukharin, O.V., Gintsburg, A.L., Romanova, Yu.N., and El’-Registan, G.I., Mekhanizmy vwzhivaniya bakterii (Mechenisms of Bacterial Survival), Moscow: Meditsina, 2005.

  6. Dagkessamanskaia, A., Moscoso, M., Hénard, V., Guiral, S., Overweg, K., Reuter, M., Martin, B., Wells, J., and Claverys, J.-P., Interconnection of competence, stress and CiaR regulons in Streptococcus pneumoniae: competence triggers stationary phase autolysis of ciaR mutant cells, Mol. Microbiol., 2004, vol. 51, pp. 1071–1086.

    Article  CAS  Google Scholar 

  7. Das, N. and Chandran, P., Microbial degradation of petroleum hydrocarbon contaminants: an overview, Biotechnol. Res. Int., 2011, art. 941810. https://doi.org/10.4061/2011/941810

  8. El’-Registan, G.I., Mulyukin, A.L., Nikolaev, Yu.A., Suzina, N.E., Gal’chenko, V.F., and Duda, V.I., Adaptogenic functions of extracellular autoregulators of microorganisms, Microbiology (Moscow), 2006, vol. 75, pp. 380‒389.

    Article  Google Scholar 

  9. Grant, S.S., Kaufmann, B.B., Chand, N.S., Haseley, N., and Hung, D.T., Eradication of bacterial persisters with antibiotic-generated hydroxyl radicals, Proc. Natl. Acad. Sci. U. S. A., 2012, vol. 109, pp. 12147–12152.

    Article  CAS  Google Scholar 

  10. Guiral, S., Mitchell, T.J., Martin, B., and Claverys. J.-P., Competence-programmed predation of noncompetent cells in the human pathogen Streptococcus pneumoniae: genetic requirements, Proc. Natl. Acad. Sci. U. S. A., 2005, vol. 102, pp. 8710–8715.

    Article  CAS  Google Scholar 

  11. Ivshina, I.B., Mukhutdinova, A.N., Tyumina, H.A., Vikhareva, H.V., Suzina, N.E., El’-Registan, G.I., and Mulyukin, A.L., Drotaverine hydrochloride degradation using cyst-like dormant cells of Rhodococcus ruber, Curr. Microbiol., 2015, vol. 70, pp. 307–314.

    Article  CAS  Google Scholar 

  12. Lewis, K., Persister cells, Annu. Rev. Microbiol., 2010, vol. 64, pp. 357–372.

    Article  CAS  Google Scholar 

  13. Loiko, N.G., Kozlova, A.N., Nikolaev, Y.A., El’-Re-gistan, G.I., Gaponov, A.M., and Tutel’yan, A.V., Effect of stress on emergence of antibiotic-tolerant Escherichia coli cells, Microbiology (Moscow), 2015, vol. 84, pp. 512‒528.

    Article  CAS  Google Scholar 

  14. Lopez, D. and Kolter, R., Extracellular signals that define distinct and coexisting cell fates in Bacillus subtilis, FEMS Microbiol. Rev., 2010, vol. 34, pp. 134–149.

    Article  CAS  Google Scholar 

  15. Mulyukin, A.L., Kozlova, A.N., Sorokin, V.V., El’-Registan, G.I., Suzina, N.E., Cherdyntseva, T.A., Kotova, I.B., Gaponov, A.M., and Tutel’yan, A.V., Surviving forms in antibiotic-treated Pseudomonas aeruginosa, Microbiology (Moscow), 2015, vol. 84, pp. 751‒763.

    Article  CAS  Google Scholar 

  16. Mulyukin, A.L., Suzina, N.E., Mel’nikov, V.G., Gal’chenko, V.F., and El’-Registan, G.I., Dormant state and phenotypic variability of Staphylococcus aureus and Corynebacterium pseudodiphtheriticum, Microbiology (Moscow), 2014, vol. 85, pp. 149‒159.

    Article  Google Scholar 

  17. Nikovaev Yu.A., Borzenkov, I.A., Demkina, E.V., Loiko, N.G., Kanapatskii, T.A., Perminova, I.V., Khreptugova, A.N., Grigor’eva, N.V., Bliznets, I.V., Manucharo-va, N.A., Sorokin, V.V., Kovalenko, M.A., and El’-Registan, G.I., New biocomposite materials based on hydrocarbon-oxidizing microorganisms and their potential for oil products degradation, Microbiology (Moscow), 2021, vol. 90, pp. 731–742.

  18. Solyanikova, I.P., Suzina, N.E., Golovleva, L.A., Mulyukin, A.L., and El-Registan, G.I., Improved xenobiotic-degrading activity of Rhodococcus opacus strain 1cp after dormancy, J. Environ. Sci. Health B, 2011, vol. 46, pp. 638–647.

    Article  CAS  Google Scholar 

  19. Sulaiman, J.E. and Lam, H., Evolution of bacterial tolerance under antibiotic treatment and its implications on the development of resistance, Front. Microbiol., 2021, vol. 12, article 617412. https://doi.org/10.3389/fmicb.2021.617412

    Article  PubMed  PubMed Central  Google Scholar 

  20. Van den Bergh, B., Fauvart, M., and Michiels, J., Formation, physiology, ecology, evolution and clinical importance of bacterial persisters, FEMS Microbiol. Rev., 2017, vol. 41, pp. 219–251.

    Article  CAS  Google Scholar 

  21. Van den Bergh, B., Michiels, J.E., and Michiels, J., Experimental evolution of Escherichia coli persister levels using cyclic antibiotic treatments, Methods Mol. Biol., 2016a, vol. 1333, pp. 131‒143. https://doi.org/10.1007/978-1-4939-2854-5_12

    Article  CAS  PubMed  Google Scholar 

  22. Van den Bergh, B., Michiels, J.E., Wenseleers, T., Windels, E.M., Boer, P.V., Kestemont, D., De Meester, L., Verstrepen, K.J., Verstraeten, N., Fauvart, M., and Michiels, J., Frequency of antibiotic application drives rapid evolutionary adaptation of Escherichia coli persistence, Nat. Microbiol., 2016b, vol. 1, article 16020. https://doi.org/10.1038/nmicrobiol.2016.20

    Article  CAS  PubMed  Google Scholar 

  23. Veening, J.-W., Hamoen, L.W., and Kuipers, O.P., Phosphatases modulate the bistable sporulation gene expression pattern in Bacillus subtilis, Mol. Microbiol., 2005, vol. 56, pp. 1481–1494.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-29-05009/18, and, in part, by the State Assignment of the Russian Federation Ministry of Education and Science for the Federal Research Center of Biotechnology, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Nikolaev.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by E. Babchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolaev, Y.A., Loiko, N.G., Demkina, E.V. et al. Highly Persistent Strains of Hydrocarbon-Oxidizing Bacteria as a Base for Increasing the Viable Cell Numbers during Long-Term Storage. Microbiology 90, 868–872 (2021). https://doi.org/10.1134/S0026261721060126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261721060126

Keywords:

Navigation