Skip to main content

Advertisement

Log in

Bacteria Isolated from Antarctic Permafrost are Efficient Antibiotic Producers

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Nontraditional sources were shown to be promising for obtaining bacterial isolates characterized by efficient production of antibiotics, including those affecting the strains with multidrug resistance. From Antarctic permafrost, 32 bacterial strains were isolated, and their ability to synthesize antimicrobal compounds efficient against 12 test strains, including the ones with multidrug resistance, was studied in submerged cultures. Out of 13 strains producing antibiotic compounds with different spectra of action, seven were chosen for further study. Their species identification was carried out by microbiological techniques and by analysis of their 16S rRNA gene sequences. Six strains of spore-forming bacteria were identified as Bacillus species (B. licheniformis, B. mojavensis, B. safensis, and B. subtilis), while one strain was identified as Gordonia terrae. Antimicrobial activity of two B. mojavensis strains (INA 01149 and INA 01151), two B. safensis strains (INA 01153 and INA 01154), and B. licheniformis strain INA 01155 against the antibiotic-resistant tester strain Leuconostoc mesenteroides VKPM B-4177 (VR) was revealed. Antibiotic activity of two B. safensis strains (INA 01153 and INA 01154) against tester bacteria, including Pseudomonas aeruginosa ATCC 27853 and Staphylococcus aureus INA 00761 with multidrug resistance has not been reported previously. Antibiotic producers isolated from Antarctic permafrost samples are of interest to medicine due to the global issue of increasing antibiotic resistance of pathogenic bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Alvarez-Ordóñez, A., Begley, M., Clifford, T., Deasy, T., Considine, K., O’Connor, P., Ross, R.P., and Hill, C., Investigation of the antimicrobial activity of Bacillus licheniformis strains isolated from retail powdered infant milk formulae, Probiotics Antimicrob. Proteins, 2014, vol. 6, pp. 32–40.

    Article  PubMed  CAS  Google Scholar 

  2. Arenskötter, M., Bröker, D., and Steinbüchel, A., Biology of the metabolically diverse genus Gordonia, Appl. Environ. Microbiol., 2004, vol. 70, pp. 3195–3204.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Bérdy, J., Bioactive microbial metabolites, J. Antibiot., 2005, vol. 58, pp. 1–26.

    Article  PubMed  Google Scholar 

  4. Blaschke, A.J., Bender, J., Byington, C.L., Korgenski, K., Daly, J., Petti, C.A., Pavia, A.T., and Ampofo, K., Gordonia species: emerging pathogens in pediatric patients that are identified by 16S ribosomal RNA gene sequencing, Clin. Infect. Dis., 2007, vol. 45, pp. 483–486.

    Article  PubMed  Google Scholar 

  5. Boucher, H.W., Talbot, G.H., Bradley, J.S., Edwards, J.E., Gilbert, D., Rice, L.B., Scheld, M., Spellberg, B., and Bartlett, J., Bad Bugs, No Drugs: No ESKAPE!, Clin. Infect. Dis., 2009, vol. 48, pp. 1–12.

    Article  PubMed  Google Scholar 

  6. Butler, M.S., Blaskovich, M.A., and Cooper, M.A., Antibiotics in the clinical pipeline in 2013, J. Antibiot., 2013, vol. 66, pp. 571–591.

    Article  PubMed  CAS  Google Scholar 

  7. Butler, M.S., Blaskovich, M.A., and Cooper, M.A., Antibiotics in the clinical pipeline at the end of 2015, J. Antibiot., 2017, vol. 70, pp. 3–24.

    Article  PubMed  CAS  Google Scholar 

  8. D’Costa, V.M., King, C.E., Kalan, L., Morar, M., Sung, W.W.L., Schwarz, C., Froese, D., Zazula, G., Calmels, F., Debruyne, R., Golding, G.B., Poinar, H.N., and Wright, G.D., Antibiotic resistance is ancient, Nature, 2011, vol. 477, pp. 457–461.

    Article  PubMed  CAS  Google Scholar 

  9. Domingos, D.F., de Faria, A.F., de Souza Galaverna, R., Eberlin, M.N., Greenfield, P., Zucchi, T.D., Melo, I.S., Tran-Dinh, N., Midgley, D., and de Oliveira, V.M., Genomic and chemical insights into biosurfactant production by the mangrove-derived strain Bacillus safensis CCMA-560, Appl. Microbiol. Biotechnol., 2015, vol. 99, pp. 3155–3167.

    Article  PubMed  CAS  Google Scholar 

  10. Drancourt, M., Pelletier, J., Cherif, A.A., and Rault, D., Gordonia terrae central nervous system infection in immunocompetent patient, J. Clin. Microbiol., 1997, vol. 35, pp. 379–382.

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Dusane, D.H., Damare, S.R., Nancharaiah, Y.V., Ramaiah, N., Venugopalan, V.P., Kumar, A.R., and Zinjarde, S.S., Disruption of microbial biofilms by an extracellular protein isolated from epibiotic tropical marine strain of Bacillus licheniformis, PLoS One, 2013, vol. 8. e64501.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Favaro, G., Bogialli, S., Di Gangi, I.M., Nigris, S., Baldan, E., Squartini, A., Pastore, P., and Baldan, B., Characterization of lipopeptides produced by Bacillus licheniformis using liquid chromatography with accurate tandem mass spectrometry, Rapid Commun. Mass Spectrom., 2016, vol. 30, pp. 2237–2252.

    Article  PubMed  CAS  Google Scholar 

  13. Fickers, P., Antibiotic compounds from Bacillus: why are they so amazing?, Am. J. Biochem. Biotechnol., 2012, vol. 8, pp. 40–46.

    Article  Google Scholar 

  14. Gontang, E.A., Gaudêncio, S.P., Fenical, W., and Jensen, P.R., Sequence-based analysis of secondary-metabolite biosynthesis in marine actinobacteria, App. Env. Microbiol., 2010, vol. 76, pp. 2487–2499.

    Article  CAS  Google Scholar 

  15. Graça, A.P., Bondoso, J., Gaspar, H., Xavier, J.R., Monteiro, M.C., de la Cruz, M., Oves-Costales, D., Vicente, F., and Lage, O.M., Antimicrobial activity of heterotrophic bacterial communities from the marine sponge Erylus discophorus (Astrophorida, Geodiidae), PLoS One, 2013, vol. 8. e78992.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. He, L., Chen, W., and Liu, Y., Production and partial characterization of bacteriocin-like peptides by Bacillus licheniformis ZJU12, Microbiol. Res., 2006, vol. 161, pp. 321–326.

    Article  PubMed  CAS  Google Scholar 

  17. James, G., Universal bacterial identification by PCR and DNA sequencing of 16S rRNA gene, in PCR for Clinical Microbiology, Schuller, M., Sloots, T., James, G., Halliday, C., and Carter, I., Eds., Dordrecht: Springer, 2010, pp. 209–214.

    Google Scholar 

  18. Jasim, B., Sreelakshmi, S., Mathew, J., and Radhakrishnan, E.K., Identification of endophytic Bacillus mojavensis with highly specialized broad spectrum antibacterial activity, 3 Biotech., 2016, vol. 6, no. 2, p. 187. Kozhevin, P.A., Vinogradova, K.A., and Bulgakova, V.G., Environmental functions of antibiotics as “informobiotics,” Vestn. Mos. Univ., Ser. 17, no. 3, pp. 3–9.

  19. Lai, C.C., Wang, C.Y., Liu, C.Y., Tan, C.K., Lin, S.H., Liao, C.H., Chou, C.H., Huang, Y.T., Lin, H.I., and Hsueh, P.R., Infections caused by Gordonia species at a medical centre in Taiwan, 1997 to 2008, Clin. Microbiol. Infect., 2010, vol. 16, pp. 1448–1453.

    Article  PubMed  CAS  Google Scholar 

  20. Lewis, K. and Shan, Y., Why tolerance invites resistance, Science, 2017, vol. 355, p. 796.

    Article  PubMed  CAS  Google Scholar 

  21. Levin, B.R., Baquero, F., Ankomah, P., and McCall, I.C., Phagocytes, antibiotics and self-limiting bacterial infections, Trends Microbiol., 2017, vol. 25, pp. 878–892.

    Article  PubMed  CAS  Google Scholar 

  22. Levin-Reisman, I., Ronin, I., Gefen, O., Braniss, I., Shoresh, N., and Balaban, N.Q., Antibiotic tolerance facilitates the evolution of resistance, Science, 2017, vol. 355, pp. 826–834.

    Article  PubMed  CAS  Google Scholar 

  23. Mikolasch, A., Hammer, E., and Schauer, F., Synthesis of imidazol-2-yl amino acids by using cells from alkane-oxidizing bacteria, Appl. Environ. Microbiol., 2003, vol. 69, pp. 1670–1679.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Petrova, M.A., Gorlenko, Zh.M., Soina, V.S., and Mindlin, S.Z., Association of the strA–strB genes with plasmids and transposons in the present-day bacteria and in bacterial strains from permafrost, Russ. J. Genet., 2008, vol. 44, pp. 1116–1120.

    Article  CAS  Google Scholar 

  25. Petrova, M., Gorlenko, Z., and Mindlin, S., Molecular structure and translocation of a multiple antibiotic resistance region of a Psychrobacter psychrophilus permafrost strain, FEMS Microbiol. Lett., 2009, vol. 296, pp. 190–197.

    Article  PubMed  CAS  Google Scholar 

  26. Rivardo, F., Turner, R.J., Allegrone, G., Ceri, H., and Martinotti, M.G., Anti-adhesion activity of two biosurfactants produced by Bacillus spp. prevents biofilm formation of human bacterial pathogens, Appl. Microbiol. Biotechnol., 2009, vol. 83, pp. 541–553.

    Article  PubMed  CAS  Google Scholar 

  27. Shternshis, M.V., Belyaev, A.A., Tsvetkova, V.P., and Shpatova, T.V., Biopreparaty na osnove bakterii roda Bacillus dlya upravleniya zdorov’em rastenii (Bacillus-Based Biopreparations for Regulation of Plant Health), Novosibirsk: Sib. Otd. RAS, 2016.

    Google Scholar 

  28. Sowani, H., Kulkarni, M., and Zinjarde, S., An insight into the ecology, diversity and adaptations of Gordonia species, Crit. Rev. Microbiol., 2017, vol. 25, pp. 1–21.

    Google Scholar 

  29. Stackebrandt, E., Rainey, F.A., and Ward-Rainey, N.L., Proposal for a new hierarchic classification system, Actinobacteria classis nov., Int. J. Syst. Bacteriol., 1997, vol. 47, pp. 479–491.

    Article  Google Scholar 

  30. Sumi, C.D., Yang, B.W., Yeo, I.C., and Hahm, Y.T., Antimicrobial peptides of the genus Bacillus: a new era for antibiotics, Can. J. Microbiol., 2015, vol. 61, pp. 93–103.

    Article  PubMed  CAS  Google Scholar 

  31. Sun, H., He, Y., Xiao, Q., Ye, R., and Tian, Y., Isolation, characterization, and antimicrobial activity of endophytic bacteria from Polygonum cuspidatum, Afr. J. Microbiol. Res., 2013, vol. 7, pp. 1496–1504.

    Article  CAS  Google Scholar 

  32. Ventola, C.L., the antibiotic resistance crisis: part 1: causes and threats, P. T., 2015, vol. 40, pp. 277–283.

    PubMed  PubMed Central  Google Scholar 

  33. Vinogradova, K.A., Bulgakova, V.G., Polin, A.N., and Kozhevin, P.A., Microbial resistance to antibiotics: resistome, its volume, diversity, and development, Antibiot. Khimioterap., 2013, vol. 58, pp. 5–6.

    Google Scholar 

  34. Yakimov, M.M., Kröger, A., Slepak, T.N., Giuliano, L., Timmis, K.N., and Golyshin, P.N., A putative lichenysin A synthetase operon in Bacillus licheniformis: initial characterization, Biochim. Biophys. Acta, 1998, vol. 1399, no. 2–3, pp. 141–153.

    Article  PubMed  CAS  Google Scholar 

  35. Youcef-Ali, M., Kacem Chaouche, N., Dehimat, L., Bataiche, I., Kara Ali, M., Cawoy, H., and Thonart, P., Antifungal activity and bioactive compounds produced by Bacillus mojavensis and Bacillus subtilis, Afr. J. Microbiol. Res., 2014, vol. 8, pp. 476–484.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was financially supported in part by the Russian Foundation for Basic Research, project no. 17-00-00393\17 of November 16, 2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Efimenko.

Additional information

Translated by D. Timchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Efimenko, T.A., Efremenkova, O.V., Demkina, E.V. et al. Bacteria Isolated from Antarctic Permafrost are Efficient Antibiotic Producers. Microbiology 87, 692–698 (2018). https://doi.org/10.1134/S0026261718050089

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261718050089

Keywords:

Navigation