Skip to main content
Log in

Exploring plant growth promoting potential of non rhizobial root nodules endophytes of Vigna radiata

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Plant growth promoting (PGP) rhizobacteria exert beneficial effects and may establish as endophytes in their hosts. Here, plant growth promoting traits of 26 non rhizobial and one fungal endophyte previously isolated from Vigna radiata root-nodules were assessed for IAA and siderophore production, phosphate solubilization and hydrolytic enzymes production. Most bacterial endophytes improved seedling vigor index while fungal endophyte (Macrophomina phaseolina) lacked all PGP traits. Endophytes Ml, M10 and M15 were most influential in improving Seedling Vigor Index. Three endophytes having multiple PGP traits with maximum siderophore production: 46.77 μg mL−1 (Bacillus anthracis; Ml), IAA production: 10.81 μg mL−1 (Paenibacillus taichungensis; M10) and phosphate solubilization: 134.483 μg mL−1 (Paenibacillus xylanilyticus; M15) significantly increased root length (RL), shoot length (SL), number of lateral roots (NLR) and plant dry weight (DW) when inoculated/co inoculated with E. adhaerens (native rhizobia) to V. radiata in a small field trial. M10 inoculation produced longest RL while Ml when coinoculated with E. adhaerens produced highest SL and NLR. Ml inoculation or coinoculation was most effective in improving dry weight of mature plants. Most of the endophytes coinoculated with E. adhaerens improved growth parameters. We report that non rhizobial endophytes with PGP traits in combination with native rhizobia can be prospective candidates for use as biofertilizer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zakhia, F., Jeder, H., Willems, A., Gillis, M., Dreyfus, B., and de Lajudie, P., Diverse bacteria associated with root nodules of spontaneous legumes in Tunisia and first report for nifH-lik gene within the genera Microbacterium and Starkeya, Microb. Ecol., 2006, vol. 51, pp. 375–393.

    Article  PubMed  Google Scholar 

  2. Kan, F.L., Chen, Z.Y., Wang, E.T., Tian, C.F., Sui, X.H., and Chen, W.X., Characterization of symbiotic and endophytic bacteria isolated from root nodules of herbaceous legumes grown in Qinghai-Tibet plateau and in other zones of China, Arch. Microbiol., 2007, vol. 188, pp. 103–115.

    Article  CAS  PubMed  Google Scholar 

  3. Tariq, M., Hameed, S., Yasmeen, T., Zahid, M., and Zafar, M., Molecular characterization and identification of plant growth promoting endophytic bacteria isolated from the root nodules of pea (Pisum sativum L.), World J. Microbiol. Biotechnol., 2014, vol. 30, pp. 719–725.

    Article  CAS  PubMed  Google Scholar 

  4. Kirchhof, G., Reis, V.M., Baldani, J.L., Eckert, B., Döbereiner, J., and Hartmann, A., Occurrence, physiological and molecular analysis of endophytic diazotrophic bacteria in gramineous energy plants, Plant Soil, 1997, vol. 194, pp. 45–55.

    Article  CAS  Google Scholar 

  5. Igual, J.M., Valverde, A., Cervantes, E., and Velazquez, E., Phosphate-solubilizing bacteria as inoculants for agriculture: use of updated molecular techniques in their study, Agronomie, 2001, vol. 21, pp. 561–568.

    Article  Google Scholar 

  6. Tilak, K.V.B.R., Ranganayaki, N., and Manoharachari, C., Synergistic effects of plant-growth promoting rhizobacteria and Rhizobium on nodulation and nitrogen fixation by pigeonpea (Cajanus cajan), Eur. J. Soil Sci., 2006, vol. 57, pp. 67–71.

    Article  CAS  Google Scholar 

  7. Mrabet, M., Mnasri, B., Romdhane, S.B., Laguerre, G., Aouani, M.E., and Mhamdi, R., Agrobacterium strains isolated from root nodules of common bean specifically reduce nodulation by Rhizobium gallicum, FEMS Microbiol. Ecol., 2006, vol. 56, pp. 304–309.

    Article  CAS  PubMed  Google Scholar 

  8. Wang, L.L., Wang, E.T., Liu, J., Li, Y., and Chen, W.X., Endophytic occupation of root nodules and roots of Melilotus dentatus by Agrobacterium tumefaciens, Microbial. Ecol., 2006, vol. 52, pp. 436–443.

    Article  Google Scholar 

  9. Chihaoui, S.A., Mhadhbi, H., and Mhamdi, R., The antibiosis of nodule-endophytic agrobacteria and its potential effect on nodule functioning of Phaseolus vulgaris, Arch. Microbiol., 2012, vol. 194, pp. 1013–1021.

    Article  CAS  PubMed  Google Scholar 

  10. Pandya, M., Kumar, G.N., and Rajkumar, S., Invasion of rhizobial infection thread by non-rhizobia for colonization of Vigna radiata root nodules, FEMS Microbiol. Lett., 2013, vol. 348, pp. 58–65.

    Article  CAS  PubMed  Google Scholar 

  11. Vincent, J.M., A Manual for Practical Study of the Root Nodule Bacteria (IBP Handbook, no. 15, Int. Biol. Program, London): Oxford: Blackwell, 1970.

    Google Scholar 

  12. Gordon, S.A. and Weber, R.P., Colorimetric estimation of indoleacetic acid, Plant Physiol., 1951, vol. 26, pp. 192–195.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Schwyn, B. and Neilands, J.B., Universal chemical assay for the detection and determination of siderophores, Anal. Biochem., 1987, vol. 160, pp. 47–56.

    Article  CAS  PubMed  Google Scholar 

  14. Khan, A., Geetha, R., Akolkar, A., Pandya, A., Archana, G., and Desai, A.J., Differential cross-utilization of heterologous siderophores by nodule bacteria of Cajanus cajan and its possible role in growth under iron-limited conditions, Appl. Soil Ecol., 2006, vol. 34, pp. 19–26.

    Article  Google Scholar 

  15. Pikovskaya, R.I., Mobilization of phosphorus in soil connection with vital capacity of source microbial species, Microbiologiya, 1948, vol. 17, pp. 362–370.

    CAS  Google Scholar 

  16. Ames, B.N., Assay of inorganic phosphate, total phosphate and phosphatases, in Methods Enzymology, vol. 8: Complex Carbohydrates, Neufeld, E. and Ginsburg, V., Eds., New York: Academic, 1966, pp. 115–118.

    Chapter  Google Scholar 

  17. Cotty, P.J., Cleveland, T.E., Brown, R.L., and Mellon, J.E., Variation in polygalacturonase production among Aspergillus flavus isolates, Appl. Environ. Microbiol., 1990, vol. 56, pp. 3885–3887.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Tanaka, T., Fujiwara, S., Nishikori, S., Fukui, T., Takagi, M., and Imanaka, T., A unique chitinase with dual active sites and triple substrate binding sites from the hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1, Appl. Environ. Microbiol., 1999, vol. 65, pp. 5338–5344.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Wold, A., International seed testing association history, 1974–1995, Seed Sci. Technol., 1996, vol. 24, pp. 95–106.

    Google Scholar 

  20. Abdul-Baki, A.A. and Anderson, J.D., Vigor determination in soybean seed by multiple criteria, Crop Sci., 1973, vol. 13, pp. 630–633.

    Article  Google Scholar 

  21. Barea, J.M., Pozo, M.J., Azcon, R., and Azcon-Aguilar, C., Microbial cooperation in the rhizosphere, J. Exp. Bot., 2005, vol. 56, pp. 1761–1778.

    Article  CAS  PubMed  Google Scholar 

  22. Rajendran, G., Patel, M.H., and Joshi, S.J., Isolation and characterization of nodule-associated Exiguobacterium sp. from the root nodules of Fenugreek (Trigonella foenum-graecum) and their possible role in plant growth promotion, Int. J. Microbiol., 2012, article ID 693982. doi: 10/1155/2012/693982

    Google Scholar 

  23. Rajendran, G., Sing, F., Desai, A.J., and Archana, G., Enhanced growth and nodulation of pigeon pea by coinoculation of Bacillus strains with Rhizobium spp., Biores. Technol., 2008, vol. 99, pp. 4544–4550.

    Article  CAS  Google Scholar 

  24. Araujo, W.L., Maccheroni, W.Jr., Aguilar-Vildoso, C.I., Barroso, P.A., Saridakis, H.O., and Azevedo, J.L., Variability and interactions between endophytic bacteria and fungi isolated from leaf tissues of citrus rootstocks, Can. J. Microbiol., 2001, vol. 47, pp. 229–236.

    Article  CAS  PubMed  Google Scholar 

  25. Taurian, T., Anzuay, M., Angelini, J., Tonelli, M., Luduena, L., Pena, D., Ibanez, F., and Fabra, A., Phosphate-solubilizing peanut associated bacteria: screening for plant growth-promoting activities, Plant Soil, 2010, vol. 329, pp. 421–431.

    Article  CAS  Google Scholar 

  26. Spaepen, S. and Vanderleyden, J., Auxin and plantmicrobe interactions, Cold Spring Harb. Perspect. Biol., 2011, vol. 3, a001438.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Byers, B.R., Powell, M.V., and Lankford, C.E., Ironchelating hydroxamic acid (schizokinen) active in initiation of cell division in Bacillus megaterium, J. Bacteriol., 1967, vol. 93, pp. 286–294.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Ollinger, J., Song, K.B., Antelmann, H., Hecker, M., and Hermann, J.D., Role of the Fur regulon in iron transport in Bacillus subtilis, J. Bacteriol., 2006, vol. 188, pp. 3664–3673.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Lemanceau, P., Bauer, P., Kraemer, S., and Briat, J.F., Iron dynamics in the rhizosphere as a case study for analyzing interactions between soils, plants and microbes, Plant Soil, 2009, vol. 321, pp. 513–535.

    Article  CAS  Google Scholar 

  30. Dawwam, G.E., Elbeltagy, A., Emara, H.M., Abbas, I.H., and Hassan, M.M., Beneficial effect of plant growth promoting bacteria isolated from the roots of potato plant, Ann. Agric. Sci., 2013, vol. 58, pp. 195–201.

    Google Scholar 

  31. Chen, Y.P., Rekha, P.D., Arun, A.B., Shen, F.T., Lai, W.A., and Young, C.C., Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities, Appl. Soil Ecol., 2006, vol. 34, pp. 33–41.

    Article  Google Scholar 

  32. Lee, J.C., Kim, C.J., and Yoon, K.H., Paenibacillus telluris sp. nov., a novel phosphate-solubilizing bacterium isolated from soil, J. Microbiol., 2011, vol. 49, pp. 617–621.

    Article  PubMed  Google Scholar 

  33. Ahemad, M. and Khan, M., Biotoxic impact of fungicides on plant growth promoting activities of phosphate-solubilizing Klebsiella sp. isolated from mustard (Brassica campestris) rhizosphere, J. Pest. Sci., 2012, vol. 85, pp. 29–36.

    Article  Google Scholar 

  34. Chernin, L. and Chet, I., Microbial enzymes in biocontrol of plant pathogens and pests, in Enzymes in the Environment: Activity, Ecology and Applications, Burns, R.G. and Dick, R.P., Eds., New York: Marcel Dekker, 2002, pp. 171–225.

    Google Scholar 

  35. Reinhold-Hurek, B. and Hurek, T., Life in grasses: diazotrophic endophytes, Trends Microbiol., 1998, vol. 6, pp. 139–144.

    Article  CAS  PubMed  Google Scholar 

  36. Raju, N.S., Niranjana, S.R., Janardhana, G.R., Prakash, H.S., Shetty, H.S., and Mathur, S.B., Improvement of seed quality and field emergence of Fusarium moniliforme infected sorghum seeds using biological agents, J. Sci. Food Agric., 1999, vol. 79, pp. 206–212.

    Article  CAS  Google Scholar 

  37. Long, H.H., Schmidt, D.D., and Baldwin, I.T., Native bacterial endophytes promote host growth in a speciesspecific manner; phytohormone manipulations do not result in common growth responses, PLoS One, 2008, vol. 3, e2702.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Stajkovic, O., Isolation and characterization of endophytic non-rhizobial bacteria from root nodules of alfalfa (Medicago sativa L.), Bot. Serb., 2009, vol. 33, pp. 107–114.

    Google Scholar 

  39. Zhao, L.F., Xu, Y.J., Ma, Z.Q., Deng, Z.S., Shan, C.J., and Wei, G.H., Colonization and plant growth promoting characterization of endophytic Pseudomonas chlororaphis strain Zongl isolated from Sophora alopecuroides root nodules, Braz. J. Microbiol., 2013, vol. 44, pp. 623–631.

    PubMed Central  PubMed  Google Scholar 

  40. Liu, Z.L. and Sinclair, J.B., Colonization of soybean roots by Bacillus megaterium B153-2-2, Soil Biol. Biochem., 1993, vol. 25, pp. 849–855.

    Article  Google Scholar 

  41. Nagarajkumar, M., Bhaskaran, R., and Velazhahan, R., Involvement of secondary metabolites and extracellular lytic enzymes produced by Pseudomonas fluorescens in inhibition of Rhizoctonia solani, the rice sheath blight pathogen, Microbiol. Res., 2004, vol. 159, pp. 73–81.

    Article  CAS  PubMed  Google Scholar 

  42. Li, J.H., Wang, E.T., Chen, W.F., and Chen, W.X., Genetic diversity and potential for promotion of plant growth detected in nodule endophytic bacteria of soybean grown in Heilongjiang province of China, Soil Biol. Biochem., 2008, vol. 40, pp. 238–246.

    Article  CAS  Google Scholar 

  43. Seghers, D., Wittebolle, L., Top, E.M., Verstraete, W., and Siciliano, S.D., Impact of agricultural practices on the Zea mays L. endophytic community, Environ. Microbiol., 2004, vol. 70, pp. 1475–1482.

    Article  CAS  Google Scholar 

  44. Bremer, C., Braker, G., Matthies, D., Beierkuhnlein, C., and Conrad, R., Plant presence and species combination, but not diversity, influence denitrifier activity and the composition of nirK-type denitrifier communities in grassland soil, FEMS Microbiol. Ecol., 2009, vol. 70, pp. 377–387.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rajkumar.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandya, M., Rajput, M. & Rajkumar, S. Exploring plant growth promoting potential of non rhizobial root nodules endophytes of Vigna radiata . Microbiology 84, 80–89 (2015). https://doi.org/10.1134/S0026261715010105

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261715010105

Keywords

Navigation