Skip to main content
Log in

Reactivation of dormant and nonculturable bacterial forms from paleosoils and subsoil permafrost

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Methods of reactivating the dormant forms (DFs) and nonculturable cells (NCs) of the bacterial communities of buried paleosoils and subsoil permafrost stored for long periods of time (thousands to millions of years), including completely sterile samples (CFU = 0), were developed. They were based on washing the DFs and NCs to remove anabiosis autoinducers (spore germination autoinhibitors) and introducing low molecular weight extracellular growth regulators of microbial or plant origin, such as alkylhydroxybenzenes of the alkylresorcinol subtype, indoleacetic acid, and wheat germ agglutinin. It was revealed that the dormant communities of permafrost and buried soils differed in their sensitivity to reactivating factors, probably due to different natural storage conditions of the tested soil substrates and the heterogeneity of dormant populations. The latter was confirmed by FISH (fluorescent in situ hybridization): applying the reactivation methods to the cells of the dormant permafrost community resulted in an increase in the number of metabolically active cells from 5 to 77% of their total number. In contrast, the addition of microbial anabiosis autoinducers (C12-AHB) to background surface soil and permafrost samples caused the transition of bacterial cells to the dormant or the nonculturable state, depending on the C12-AHB concentration and the sensitivity of the cells from the control soil or permafrost’ to it. The data obtained contribute to our knowledge concerning the role of intercellular communication factors and the survival of microorganisms under extreme environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vorobyova, E.A., Minkovsky N., Mamukelashvili A., Zvyagintsev, D.G., Soina V.S., Polanskaya, L., and Gilichinsky D.A., Microorganisms and Biomarkers in Permafrost, in Permafrost Response on Economic Development, Environmental Security and Natural Resourses, Paepe, R. and Melnikov, V., Eds., Kluwer Acad. Publ., 2001, pp. 527–541.

  2. Vorobyova, E., Soina, V., Gorlenko, M., Minkovskaya, N., Zalinova, N., Mamukelashvili, A., Gilichinsky, D., Rivkina, E., and Vishnivetskaya, T., The Deep Cold Biosphere: Facts and Hypothesis, FEMS Microbiol. Rev., 1997, vol. 20, pp. 277–290.

    Article  CAS  Google Scholar 

  3. Demkina, E.V., Soina, V.S., Mulyukin, A.L., El’Registan, G.I., and Zvyagintsev, D.G., Survival of Non-Spore-Forming Bacteria in Permafrost Sedimentary Rocks, in Pochvennye protsessy i prostranstvennovremennaya organizatsiya pochv (Soil Processes and Spatio-Temporal Organization of Soils), Moscow: Nauka, 2006, pp. 58–173.

    Google Scholar 

  4. Vishnivetskaya, T., Petrova, M., Urbance, J., Ponder, M., Moyer, C., Gilichinsky, D., and Tiedje, J., Bacterial Community in Ancient Siberian Permafrost as Characterized by Culture and Culture-Independent Methods, Astrobiology, 2006, vol. 6, no. 3, pp. 400–414.

    Article  PubMed  CAS  Google Scholar 

  5. Roszak, D.B. and Colwell, R.R., Survival Strategies of Bacteria in the Natural Environment, Microbiol. Rev., 1987, vol. 51, no. 3, pp. 365–379.

    PubMed  CAS  Google Scholar 

  6. Soina, V.S., Mulyukin, A.L., Demkina, E.V., Vorobyova, E.A., and El-Registan, G.I., The Structure of Resting Microbial Populations in Soil and Subsoil Permafrost, Astrobiology, 2004, vol. 4, no. 3, pp. 348–358.

    Article  Google Scholar 

  7. Kaprelyants, A.S. and Kell, D.B., Dormancy in Stationary-Phase Cultures of Micrococcus luteus: Flow Cytometric Analysis of Starvation and Resuscitation, Appl. Environ. Microbiol., 1993, vol. 59, pp. 3187–3196.

    PubMed  CAS  Google Scholar 

  8. Khomutova, T.E., Demkina, T.S., and Demkin, V.A., Estimation of the Total and Active Microbial Biomasses in Buried Subkurgan Paleosoils of Different Age, Microbiology, 2004, vol. 7, no. 2, pp. 196–201.

    Article  Google Scholar 

  9. Dmitriev, V.V., Suzina, N.E., Rusakova, T.G., Gilichinskii, D.A., and Duda, V.I., Ultrastructural Characteristics of Natural Forms of Microorganisms Isolated from Permafrost Grounds of Eastern Siberia by the Method of Low-Temperature Fractionation, Doklady Biol. Sci., 2001, vol. 378, pp. 304–307.

    Article  CAS  Google Scholar 

  10. Suzina, N.E., Mulyukin, A.L., Dmitriev, V.V., Nikolaev, Yu.A., Shorokhova, A.P., Bobkova, Yu.S., Barinova, E.S., Plakunov, V.K., El-Registan, G.I., and Duda, V.I., The Structural Bases of Long-Term Anabiosis in Non-Spore-Forming Bacteria, J. Adv. Space Res., 2006, vol. 38, pp. 1209–1219.

    Article  Google Scholar 

  11. Mulyukin, A.L., Demkina, E.V., Kryazhevskikh, N.A., Suzina, N.E., Vorob’eva, L.I., Duda, V.I., Gal’chenko, V.F., and El’-Registan, G.I., Dormant Forms of Micrococcus luteus and Arthrobacter globiformis not Platable on Standard Media, Microbiology, 2009, vol. 78, no. 4, pp. 407–418.

    Article  CAS  Google Scholar 

  12. Bogosian, G., Aardema, N.D., Bourneuf, E.V., Morris, P.J.L., and O’Neil, J.P., Recovery of Hydrogen Peroxide-Sensitive Culturable Cells of Vibrio vulnificus Gives the Apperance of Resuscitation from a Viable but Nonculturable State, J. Bacteriol., 2000, vol. 182, no. 18, pp. 5070–5075.

    Article  PubMed  CAS  Google Scholar 

  13. Sudo, S.Z. and Dworkin, M., Comparative Biology of Procaryotic Resting Cells, Adv. Microb. Physiol., 1973, vol. 9, pp. 153–224.

    Article  PubMed  CAS  Google Scholar 

  14. Votyakova, T.V., Kaprelyants, A.S., and Kell, D.B., Influence of Viable Cells on Resuscitation of Dormant Cells in Micrococcus luteus Cultures Held in Extended Stationary Phase, Appl. Environ. Microbiol., 1994, vol. 60, pp. 3284–3291.

    PubMed  CAS  Google Scholar 

  15. Mukamolova, G.V., Murzin, A.G., Salina, E.G., Demina, G.R., Kell, D.B., Kaprelyants, A.S., and Young, M., Muralytic Activity of Micrococcus luteus Rpf and Its Relationship to Physiological Activity in Promoting Bacterial Growth and Resuscitation, Mol. Microbiol., 2006, vol. 59, pp. 84–98.

    Article  PubMed  CAS  Google Scholar 

  16. Antonyuk, L.P., Plant Lectins as Factors of Communication in Symbioses, in Molekulyarnye osnovy vzaimootnoshenii assotsiativnykh mikroorganizmov s rasteniyami (Molecular Bases of the Interactions of Associated Microorganisms with Plants), Ignatov, V.V., Ed., Moscow: Nauka, 2005, pp. 118–159.

    Google Scholar 

  17. Mockaitis, K. and Estelle, M., Auxin Receptors and Plant Development: A New Signaling Paradigm, Annu. Rev. Cell. Dev. Biol., 2008, vol. 24, pp. 55–80.

    Article  PubMed  CAS  Google Scholar 

  18. El’-Registan, G.I., Mulyukin, A.L., Nikolaev, Yu.A., Suzina, N.E., Gal’chenko, V.F., and Duda, V.I., Adaptogenic Functions of Extracellular Autoregulators of Microorganisms, Microbiology, 2006, vol. 75, no. 4, pp. 380–389.

    Article  Google Scholar 

  19. Mulyukin, A.L., Suzina, N.E., Duda, V.I., and El’-Registan, G.I., Structural and Physiological Diversity among Cystlike Resting Cells of Bacteria of the Genus Pseudomonas Microbiology, 2008, vol. 77, no. 4, pp. 451–454.

    Article  Google Scholar 

  20. Praktikum po mikrobiologii (Practical Course in Microbiology), Egorov, N.S., Ed., Moscow: Izd-vo MGU, 1976.

    Google Scholar 

  21. Tepper, E.Z., Shil’nikova, V.K., and Pereverzeva, G.I., Praktikum po mikrobiologii (Practical Course in Microbiology), Moscow, Drofa, 2004.

  22. Dedysh, S.N., Derakshani, M., and Liesack, W., Detection and Enumeration of Methanotrophs in Acidic Sphagnum Peat by 16S rRNA Fluorescence in situ Hybridisation, Including the Use of Newly Developed Oligonucleotide Probes for Methylocella palustris, Appl. Environ. Microbiol., 2001, vol. 67, pp. 4850–4857.

    Article  PubMed  CAS  Google Scholar 

  23. Amann, R.I., Ludwig, W., and Schleifer, K.-H., Phylogenetic Identification and in situ Detection of Individual Microbial Cells without Cultivation, Microbiol. Rev., 1995, vol. 59, pp. 143–169.

    PubMed  CAS  Google Scholar 

  24. Suzina, N.E., Mulyukin, A.L., Loiko, N.G., Kozlova, A.N., Shorokhova, A.P., Dmitriev, V.S., Gorlenko, M.V., Duda, V.I., and El’-Registan, G.I., Fine Structure of Mummified Cells of Microorganisms Formed under the Influence of a Chemical Analogue of the Anabiosis Autoinducer, Microbiology, 2001, vol. 70, no. 6, pp. 667–677.

    Article  CAS  Google Scholar 

  25. Zvyagintsev, D.G., Pochva i mikroorganizmy (Soil and Microorganisms), Moscow, Mosk. Gos. Univ., 1987.

    Google Scholar 

  26. Voloshin, S.A. and Kaprelyants, A.S., Cell-Cell Interactions in Bacterial Populations, Biochemistry (Moscow), 2004, vol. 69, no. 11, pp. 1268–1275.

    Article  CAS  Google Scholar 

  27. Shapiro, J.A. and Dworkin, M. (Eds.), Bacteria as Multicellular Organisms, Oxford: Oxford Univ. Press, 1997.

    Google Scholar 

  28. Zhang, Y., Yang, Y., Woods, A., Cotter, R.J., and Sun, Z., Resuscitation of Dormant Mycobacterium tuberculosis by Phospholipids or Specific Peptides, Biochem. Biophys. Res. Commun., 2001, vol. 284, pp. 542–547.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Kryazhevskikh.

Additional information

Original Russian Text © N.A. Kryazhevskikh, E.V. Demkina, N.A. Manucharova, V.S. Soina, V.F. Gal’chenko, G.I. El’-Registan, 2012, published in Mikrobiologiya, 2012, Vol. 81, No. 4, pp. 474–485.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kryazhevskikh, N.A., Demkina, E.V., Manucharova, N.A. et al. Reactivation of dormant and nonculturable bacterial forms from paleosoils and subsoil permafrost. Microbiology 81, 435–445 (2012). https://doi.org/10.1134/S0026261712040108

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261712040108

Keywords

Navigation