Skip to main content
Log in

Production of bio-ethanol from pretreated agricultural byproduct using enzymatic hydrolysis and simultaneous saccharification

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Global warming alerts and threats are on the rise due to the utilization of fossil fuels. Alternative fuel sources like bio-ethanol and biodiesel are being produced to combat against these threats. Bio-ethanol can be produced from a range of substrate. The present study is aimed at the Production of bioethanol from pretreated agricultural substrate using enzymatic hydrolysis and simultaneous saccharification with the addition of purified fungal enzyme. Most cellulosic biomass is not fermentable without appropriate pretreatment methods and so dilute sulfuric acid pretreatment was applied to make the cellulose contained in the waste susceptible to endoglucanase enzyme. A range of acid pretreatment of wheat bran was made in which the sample that was pretreated with 1% dilute sulfuric acid gave maximum yield of ethanol in both methods such as 5.83 g L−1 and 5.27 g L−1, respectively. Ethanol produced from renewable and cheap agricultural products (wheat bran) provides reduction in green house gas emission, carbon monoxide, sulfur, and helps to eliminate smog from the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arthe, R., Rajesh, R., Rajesh, E.M., Rajendran, R., and Jeyachandran, S., Production of Bio-Ethanol from Cellulosic Cotton Waste through Microbial Extracellular Enzymatic Hydrolysis and Fermentation, EJEAF-CHE, 2008, vol. 7, pp. 2984–2992.

    CAS  Google Scholar 

  2. Wyman, C.E., Potential Synergies and Challenges in Refining Cellulosic Biomass to Fuels, Chemicals, and Power, Biotechnol. Prog., 2003, vol. 19, pp. 254–262.

    Article  PubMed  CAS  Google Scholar 

  3. Zhang, Y.H.P., Michael, E., Himmel, R., Jonathan, Mielenz, Outlook for Cellulase Improvement: Screening and Selection Strategies, Biotechnol. Adv., 2006, vol. 24, pp. 452–481.

    Article  CAS  Google Scholar 

  4. Sun, Y. and Cheng, J.J., Dilute Acid Pretreatment of Rye Straw and Bermuda Grass for Ethanol Production, Bioresour. Technol., 2005, vol. 96, pp. 1599–1606.

    Article  PubMed  CAS  Google Scholar 

  5. Elad, Y., Biological Control of Foliar Pathogens by Means of Trichoderma harzianum and Potential Modes of Action, Crop. Protect., 2000, vol. 19, pp. 709–714.

    Article  Google Scholar 

  6. Kitchaiya, P., Intanakul, P., and Krairiksh, M., Enhancement of Enzymatic Hydrolysis of Lignocellulosic Wastes by Microwave Petreatment under Atmospheric Pressure, J. Wood Chem. Technol., 2003, vol. 23, pp. 217–225.

    Article  CAS  Google Scholar 

  7. Lynd, L.R., Weimer, P.J., Willem, H., Zyl, V., and Pretorius, I.S., Microbial Cellulose Utilization: Fundamentals and Biotechnology, Microbiol. Mol. Biol. Rev., 2002, pp. 506–577.

  8. Rosenberger, A., Identification of Top-Performing Cereals Cultivars for Grin-to-Ethanol Operation, Zuckerindustrie, 2005, vol. 130, pp. 697–701.

    Google Scholar 

  9. Haq, I.U., Hameed, U., Shahzadi, K., Javed, M., Ali, S., and Qadeer, M.A., Cotton Saccharifying Activity of Cellulases by Trichoderma harzianum UM-11 in Shake Flask, Int. J. Bot., 2005, vol. 1, pp. 19–22.

    Article  Google Scholar 

  10. Caputi, A., Jr, Ueda, M., and Brown, T., Spectrophotometric Determination of Ethanol in Wine, Am. J. Enol. Vitic, 1968, vol. 19, pp. 160–165.

    CAS  Google Scholar 

  11. Miller, G.L., Use of DNS Reagent for the Measurement of Reducing Sugar, Anal. Chem., 1959, vol. 31, pp. 426–428.

    Article  CAS  Google Scholar 

  12. Gunasekaran, P. and Kamini, N.R., High Ethanol Productivity from Lactose by Immobilized Cells of Kluyveromyces fragilis and Zymomonas mobilis, World J. Microbiol. Biotechnol., 1991, vol. 7, pp. 551–556.

    Article  CAS  Google Scholar 

  13. Nochure, S.V., Roberts, M.F., and Demain, A.L., True Cellulase Production by Clostridium thermocellum Grown on Different Carbon Sources, Biotechnol. Lett., 1993, vol. 15, pp. 641–646.

    Article  Google Scholar 

  14. Coral, G.K., Arikan, B., Naldi, M.N., and Venmez, Some Properties of Crude Carboxymethyl Cellulose of Aspergillus niger Z10 Wild-Type Strain, Turk. J. Biol., 2002, vol. 26, pp. 209–213.

    CAS  Google Scholar 

  15. Poganietz, W.R., Reinhard, T., and Bauer, C., Lignocellulosics-to-Bioethanol in the Context of Germany: Modeling Life Cycle Implications of Policy Options, J. Sci. Ind. Res., 2008, vol. 67, pp. 908–917.

    CAS  Google Scholar 

  16. Ali, F.U. and El-Den, S.S.H., Production and Partial Purification of Cellulase Complex by Aspergillus niger and A. nidulans Grown on Water Hyacinth Blend, J. Appl. Sci. Res., 2008, vol. 4, pp. 875–891.

    CAS  Google Scholar 

  17. Ali, S., Sayed, A., Sarker, R.T., and Alau, R., Factors Affecting Cellulase Production by Aspergillus niger and Aspergillus terrus Using Water Hyacinth, World J. Microbial Biotechnol., 1991, vol. 7, pp. 62–66.

    CAS  Google Scholar 

  18. Chen, T.C., Wei, Y.T., Chang, and Lin, L.P., Purification and Characterization of Carboxymethyl Cellulase from Sinorhizobium fredii, Bot. Bull. Acad. Sin., 2004, vol. 45, pp. 111–118.

    CAS  Google Scholar 

  19. Immanuel, G., Bhagavath, C., Iyappa Raj, P., Esakkiraj, P., and Palavesam, A., Production and Partial Purification of Cellulase by A. niger and A. fumigatus Fermented in Coir Waste and Sawdust, The Internet Journal of Microbiology, 2007, vol. 3, no. 1.

  20. Sultana, S., Isolation of Cellulolytic Microorganism and Their Activities, Biochemistry Department, Rajshahi Univ., Bangladesh, M. Phil. Thesis, 1997.

    Google Scholar 

  21. Nethan, X., Charles, W., Bruce, D., Richard, E., Lee, Y.Y., Mark, H., and Michael, L., Features of Promising Technologies for Pretreatment of Lignocellulosic Biomass, Biores. Tech., 2005, vol. 96, pp. 673–686.

    Article  Google Scholar 

  22. Zakpaa, H.D., Mak-Mensah, E.E., and Johnson, F.S., Production of Bio-Ethanol from Corncobs Using Aspergillus niger and Saccharomyces cerevisae in Simultaneous Saccharification and Fermentation, African J. Biotechnol., 2009, vol. 8, pp. 3018–3022.

    CAS  Google Scholar 

  23. Sreenath, H.K., Koegel, R.G., Moldes, A.B., Jeffries, T.W., and Straub, R.J., Ethanol Production from Alfalfa Fibre Fractions by Saccharification and Fermentation, Process Biochem., 2001, vol. 36, pp. 1199–1204.

    Article  CAS  Google Scholar 

  24. Wingren, A., Galbe, M., and Zacchi, G., Techno-Economic Evaluation of Producing Ethanol from Softwood: Comparison of SSF and SHF and Identification of Bottleneck, Biotechnol. Progr., 2003, vol. 19, pp. 1109–1117.

    Article  CAS  Google Scholar 

  25. Krishna, H.S., Reddy, T.J., and Chowdary, G.V., Simultaneous Saccharification and Fermentation of Lignocellulosic Wastes to Ethanol Using a Thermotolerant Yeast, Bioresour. Technol., 2001, vol. 77, pp. 193–196.

    Article  CAS  Google Scholar 

  26. Chang, V.S., Kaar, W.E., Burr, B., and Holtzapple, M.T., Simultaneous Saccharification and Fermentation of Lime-Treated biomass, Biochem. Lett., 2001, vol. 23, pp. 1327–1333.

    Article  CAS  Google Scholar 

  27. Zayed, G. and Meyer, O., The Single Batch Conversion of Wheat Straw to Ethanol Employing the Fungus Trichoderma viride and the Yeast P. tannophilus, Appl. Microbiol. Biotechnol., 1996, vol. 45, pp. 551–555.

    PubMed  CAS  Google Scholar 

  28. Olofsson, K., Bertilsson, M., and Liden, G., A Short Review on SSF-an Interesting Process Option for Ethanol Production from Lignocellulosic Feedstocks, Biotechnol. for Biofuels, 2008, vol. 1, pp. 1–14.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Uma.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gomathi, D., Muthulakshmi, C., Guru Kumar, D. et al. Production of bio-ethanol from pretreated agricultural byproduct using enzymatic hydrolysis and simultaneous saccharification. Microbiology 81, 201–207 (2012). https://doi.org/10.1134/S0026261712010079

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261712010079

Keywords

Navigation