Skip to main content
Log in

Phylogenetic composition of enrichment cultures of thermophilic prokaryotes reducing poorly crystalline Fe(III) oxide with and without direct contact between the cells and mineral

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Thirty enrichment cultures of thermophilic microorganisms were obtained from Kamchatka terrestrial hydrotherms that reduced insoluble poorly crystalline Fe(III) oxide (ferrihydrite) with and without direct contact between the cells and the mineral. Restricted access to the Fe(III) mineral was achieved by incorporation of ferrihydrite into alginate beads. According to phylogenetic analysis of 22 enrichment cultures by denaturing gradient gel electrophoresis of 16S rRNA gene fragments, Firmicutes were predominant among bacteria in all the variants. Microorganisms of the phylogenetic types Aquificae, Bacteroidetes, Nitrospirae, Planctomycetes, Spirochaetes, Synergistetes, and Thermotogae were also revealed. The archaea revealed belonged to the genera Desulfurococcus, Pyrobaculum, and Thermofilum. In the case of free access to ferrihydrite, most of the phylotypes belonged to genera known for Fe(III) reduction. In the absence of direct contact with the mineral, together with known iron reducers, organisms for which ability to reduce Fe(III) was unknown were detected. Members of the genera Carboxydothermus, Thermoanaerobacter, and Thermotoga were detected most often both in the presence and absence of contact with ferrihydrite. These organisms probably possess efficient mechanisms for Fe(III) reduction within the experimental temperature range. Microbial phylogenetic diversity was higher when acetate, rather than lactate, was used as a potential electron donor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lovley, D.R., and Holmes, D.E., and Nevin, K.P., Dissimilatory Fe(III) and Mn(IV) Reduction, Adv. Microb. Physiol., 2004, vol. 49, pp. 219–286.

    Article  CAS  PubMed  Google Scholar 

  2. Slobodkin, A.I., Thermophilic Microbial Metal Reduction, Mikrobiologiya, 2005, vol. 74, no. 5, pp. 581–595 [Microbiology (Engl. Transl.), vol. 74, no. 5, pp. 501–514].

    CAS  Google Scholar 

  3. Stams, A.J.M., de Bok, F., AM, Plugge C.M., van Eekert, M.H.A., Dolfing, J., and Schraa, G., Exocellular Electron Transfer in Anaerobic Microbial Communities, Environ. Microbiol., 2006, vol. 8, pp. 371–382.

    Article  CAS  PubMed  Google Scholar 

  4. Feinberg, L.F., Srikanth, R., Vachet, R.W., and Holden, J.F., Constrains of Anaerobic Respiration in the Hyperthermophilic Archaea Pyrobaculum islandicum and Pyrobaculum aerophilum, Appl. Environ. Microbiol., 2008, vol. 74, pp. 396–402.

    Article  CAS  PubMed  Google Scholar 

  5. Slobodkin, A.I., Reysenbach, A.L., Strutz, N., Dreier, M., and Wiegel, J., Thermoterrabacterium ferrireducens gen. nov., sp. nov., a Thermophilic Anaerobic Dissimilatory Fe(III)-Reducing Bacterium from a Continental Hot Spring, Int. J. Syst. Bacteriol., 1997, vol. 47, pp. 541–547.

    Article  CAS  PubMed  Google Scholar 

  6. Nevin, K.P. and Lovley, D.R., Lack of Production of Electron-Shuttling Compounds or Solubilization of Fe(III) During Reduction of Insoluble Fe(III) Oxide by Geobacter metallireducens, Appl. Environ. Microbiol., 2000, vol. 66, pp. 2248–2251.

    Article  CAS  PubMed  Google Scholar 

  7. Hungate, R.T, A Roll Tube Method for Cultivation of Strict Anaerobes, in Methods in Microbiology, Norris, J.B. and Ribbons, D.W., Eds., New York: Academic, 1969, pp. 116–132.

    Google Scholar 

  8. Reznikov, A.A., Mulikovskaya, E.P. and Sokolov, I.Yu., Metody analiza prirodnykh vod (Analytical Methods for Natural Waters), Moscow: Nedra, 1970.

    Google Scholar 

  9. Marmur, J., A Procedure for the Isolation of Desoxyribonucleic Acid from Microorganisms, J. Mol. Biol., 1961, vol. 3, pp. 208–218.

    Article  CAS  Google Scholar 

  10. Muyizer, G., Dewaal, E.C., and Uitterlinden, A.G., Profiling of Complex Microbial Populations by Denaturing Gradient Gel Electrophoresis Analysis of Polymerase Chain Reaction-Amplified Genes Coding for 16S rRNA, Appl. Environ. Microbiol., 1993, vol. 59, no. 3, pp. 695–700.

    Google Scholar 

  11. Lane, D.J, 16S/23S rRNA Sequencing, in Nucleic Acid Techniques in Bacterial Systematics, Stackebrandt, E. and Goodfellow, M., Eds., New York: Wiley, 1991, pp. 115–175.

    Google Scholar 

  12. Muyizer, G., Teske, A., Wirsen, C.O., and Jannasch, H.W., Phylogenetic Relationships of Thiomicrospira Species and Their Identification in Deep-Sea Hydrothermal Vent Samples by Denaturing Gradient Gel Electrophoresis of 16S rDNA Fragments, Arch. Microbiol., 1995, vol. 164, no. 3, pp. 165–172.

    Article  Google Scholar 

  13. Casamayor, E.O., Massana, R., Benlloch, S., Ovreas, L., Diez, B., Goddard, V.J., Gasol, J.M., Joint, I., Rodriguez-Valera, F., and Pedrós-Alio, C., Changes in Archaeal, Bacterial and Eukaryal Assemblages along a Salinity Gradient by Comparison of Genetic Fingerprinting Methods in a Multipond Solar Saltern, Environ. Microbiol., 2002, vol. 4, pp. 338–438.

    Article  PubMed  Google Scholar 

  14. Muyizer, G., Brinkhoff, T., Nubel, U., Santegoeds, C., Schafer, H., and Wawer, C., Denaturing Gradient Gel Electrophoresis (DGGE) in Microbial Ecology, Molecular Microbial Ecology Manual, Dordrecht: Kluwer, 1997, vol. 3.4.4, pp. 1–27.

    Google Scholar 

  15. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J., Basic Local Alignment Search Tool, J. Mol. Biol., 1990, vol. 215, pp. 403–410.

    CAS  PubMed  Google Scholar 

  16. Lovley, D.R., Coates, J.D., Blunt-Harris, E.L., Phillips, E.J.P., and Woodward, J.C., Humic Substances as Electron Acceptors for Microbial Respiration, Nature, 1996, vol. 382, pp. 445–448.

    Article  CAS  Google Scholar 

  17. Wolff-Boenisch, D. and Traina, S.J., The Effect of Desferrioxamine B, Enterobactin, Oxalic Acid, and Na-Alginate on the Dissolution of Uranyl-Treated Goetite at pH 6 and 25°C, Chem. Geol., 2007, vol. 243, pp. 357–368.

    Article  CAS  Google Scholar 

  18. Slobodkin, A.L., Tourova, T.P., Kuznetsov, B.B., Kostrikina, N.A., Chernyh, N.A., and Bonch-Osmolovskaya, E.A., Thermoanaerobacter siderophilus sp. nov., a Novel Dissimilatory Fe(III)-Reducing, Anaerobic, Thermophilic Bacterium, Int. J. Syst. Bacteriol., 1999, vol. 49, pp. 1471–1478.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Slobodkin.

Additional information

Original Russian Text © Ya.N. Nepomnyashaya, G.B. Slobodkina, T.V. Kolganova, E.A. Bonch-Osmolovskaya, A.I. Netrusov, A.I. Slobodkin, 2010, published in Mikrobiologiya, 2010, Vol. 79, No. 5, pp. 672–681.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nepomnyashaya, Y.N., Slobodkina, G.B., Kolganova, T.V. et al. Phylogenetic composition of enrichment cultures of thermophilic prokaryotes reducing poorly crystalline Fe(III) oxide with and without direct contact between the cells and mineral. Microbiology 79, 663–671 (2010). https://doi.org/10.1134/S0026261710050115

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261710050115

Key words

Navigation