Skip to main content
Log in

Isolations of α-glucosidase-producing thermophilic bacilli from hot springs of Turkey

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

From 42 different hot springs in six provinces belonging to distinct geographical regions of Turkey, 451 thermophilic bacilli were isolated and 67 isolates with a high amylase activity were selected to determine the α-glucosidase production capacities by using pNPG as a substrate. α-Glucosidase production capacities of the isolates varied within the range from 77.18 to 0.001 U/g. Eleven of our thermophilic bacilli produced α-glucosidase at significant levels comparable with that of the reference strains tested; thus, five strains, F84b (77.18 U/g), A333 (48.64 U/g), F84a (36.64 U/g), E134 (32.09 U/g), and A343 (10.79 U/g), were selected for further experiments. 16S rDNA sequence analysis revealed that these selected isolates all belonged to thermophilic bacilli 16S rDNA genetic group 5, four of them representing the genus Geobacillus, while strain A343 had an uncultured bacterium as the closest relative. Changes in α-glucosidase levels in the intracellular and extracellular fractions were determined during 48-h cultivation of A333, A343, F84a, F84b, E134, and the reference strain G. stearothermophilus ATCC 12980. According to α-glucosidase production type and enzyme levels in intracellular and extracellular fractions, Geobacillus spp. A333, F84a, and F84b were defined as extracellular enzyme producers, whereas the thermophilic bacterium A343 was found to be an intracellular α-glucosidase producer, similar to ATCC 12980 strain. Geobacillus sp. E134 differed in α-glucosidase production type from all tested isolates and the reference strain; it was described as a membrane-associated cell-bound enzyme producer. In this study, apart from screening a great number of new thermophilic bacilli from the hot springs of Turkey, which have not yet been thoroughly studied, five new thermostable α-1,4-glucosidase-producing bacilli that have biotechnological potential with α-glucosidases located at different cell positions were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Watanabe, K., Miyake, K., and Suzuki, Y., Identification of Catalytic and Substrate-Binding Site Residues in Bacillus cereus ATCC 7064 oligo-1,6-glucosidase, Biosci. Biotechnol. Biochem., 2001, vol. 65, pp. 2058–2064.

    Article  PubMed  CAS  Google Scholar 

  2. Kelly, C.T. and Fogarty, W.M., Microbial α-Glucosidases, Process Biochem., 1983, vol. 18, pp. 6–12.

    CAS  Google Scholar 

  3. Kelly, C.T., Giblin, M., and Fogarty, W.M., Resolution, Purification, and Characterization of Two Extracellular Glucohydrolases, α-Glucosidase and Maltase of Bacillus licheniformis., Can. J. Microbiol., 1986, vol. 32, pp. 342–347.

    CAS  Google Scholar 

  4. Demirjian, D.C., Moris-Varas, F., and Cassidy, C.S., Enzymes from Extremophiles, Curr. Oppinion. Chem. Biol., 2001, vol. 5, pp. 144–151.

    Article  CAS  Google Scholar 

  5. Haki, G.D. and Rakshit, S.K., Developments in Industrially Important Thermostable Enzymes: a Review, Bioresource Technol., 2003, vol. 89, pp. 17–34.

    Article  CAS  Google Scholar 

  6. Ferrari, E., Jarnagin, A.S., and Schmidt, B.F., Commercial Production of Extracellular Enzymes in Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Geneticis, Sonenshein, A.L., Hoch, J.A., and Losick, R. (Eds.), Washington, DC: Amer. Soc. Microbiol., 1993 ISBN 1-55581-053-5, pp. 917–937.

    Google Scholar 

  7. Arellano-Carbajal, F. and Olmos-Soto, J., Thermostable α-1,4- and α-1,6-Glucosidase Enzymes from Bacillus sp. Isolated from Marine Environment, World J. Microb. Biot., 2002, vol. 18, pp. 791–795.

    Article  CAS  Google Scholar 

  8. Giblin, M., Kelly, C.T., and Fogarty, W., Thermostable-α-Glucosidase Produced by Bacillus caldovelox DSM 411, Can. J. Microbiol., 1987, vol. 33, pp. 614–618.

    Article  CAS  Google Scholar 

  9. Suzuki, Y., Fujii, H., Uemura, H. and Kyoto, M.S., Purification and Characterization of Extremely Thermostable Exo-Oligo-1,6-Glucosidase from a Caldoactive Bacillus sp. KP 1228, Starch/Starke, 1987, vol. 39, pp. 17–23.

    Article  CAS  Google Scholar 

  10. Kashiwabara, S., Azuma, S., Tsuduki, M. and Suzuki, Y., The Primary Structure of the Subunit in Bacillus thermoamyloliquefaciens KP1071 Molecular Weight 540.000 Homohexameric α-Glucosidase II Belonging to the Glycosyl Hydrolase Family 31, Biosci. Biotechnol. Biochem., 2000 vol. 64, pp. 1379–1393.

    Article  PubMed  CAS  Google Scholar 

  11. Albert, H., Davies, D.J.G., Woodson, L.P. and Soper, C.J., Biological Indicators for Steam Sterilization: Characterization of a Rapid Biological Indicator Utilizing Bacillus stearothermophilus Spore-Associated Alpha-Glucosidase Enzyme, J. Appl. Microbiol., 1998, vol. 85, pp. 865–874.

    Article  PubMed  CAS  Google Scholar 

  12. Suzuki, Y., Shinji, M. and Eto, N., Assignment of a ρ-Nitrophenyl-α-D-Glucopyranosidase of Bacillus stearothermophilus ATCC 12016 to a Novel Exo-α-1,4-Glucosidase Active for Oligomaltosaccharides and α-Glucans, Biochim. Biophys. Acta., 1984, vol. 787, pp. 281–289.

    CAS  Google Scholar 

  13. Ezeji, T.C., Wolf, A. and Bahl, H., Isolation and Identification of Geobacillus thermodenitrificans HRO10, an α-Amylase and α-Glucosidase Producing Thermophile, Can. J. Microbiol., 2005, vol. 51, pp. 685–693.

    Article  PubMed  CAS  Google Scholar 

  14. Hung, V.S., Hatada, Y., Goda, S., Lu, J., Hidaka, Y., Li, Z., Akita, M., Ohta, Y., Watanabe, K., Matsui, H., Ito, S. and Horikoshi, K., α-Glucosidase from a Strain of Deep-Sea Geobacillus: a Potential Enzyme for the Biosynthesis of Complex Carbohydrates, Appl. Microbiol. Biotechnol., 2005, vol. 68, pp. 757–765.

    Article  PubMed  CAS  Google Scholar 

  15. Lee, Y.E., Cloning and Characterization of α-Glucosidase Gene from Thermophilic Bacillus sp. DG0303, J. Microbiol. Biotechnol., 2000, vol. 10, pp. 244–250.

    CAS  Google Scholar 

  16. Suzuki, Y., Kishigami, T. and Abe, S., Production of Extracellular α-Glucosidase by a Thermophilic Bacillus Species, Appl. Environ. Microbiol., 1976a, vol. 31, pp. 807–812.

    PubMed  CAS  Google Scholar 

  17. Claus, D. and Berkeley, C.W., The Genus Bacillus, in Bergey’s Manual of Systematic Bacteriology, vol. 2, Williams, Wilkins, and Sneath, Eds., 2nd ed., New York: Springer, 1986, pp. 1105–1139.

    Google Scholar 

  18. Belduz, A.O., Dulger, S. and Demirbag, Z., Anoxybacillus gonensis sp. nov., a Moderately Thermophilic, Xylose-Utilizing, Endospore-Forming Bacterium, Int. J. Syst. Evol. Microbiol., 2003, vol. 53, pp. 1315–1320.

    Article  PubMed  CAS  Google Scholar 

  19. Marmur, J., A Procedure for the Isolation of Deoxyribonucleic Acid from Micro-organisms, J. Mol. Biol., 1961, vol. 3, pp. 208–218.

    Article  CAS  Google Scholar 

  20. Bond, P. L., Smriga, S. P., and Banfield, J. F., Phylogeny of Microorganisms Populating a Thick, Subaerial, Predominantly Lithotrophic Biofilm at an Extrem Acid Mine Drainage Site, Appl. Environ. Microbiol., 2000, vol. 66, pp. 3842–3849.

    Article  PubMed  CAS  Google Scholar 

  21. Thompson, J. D., Higgins, D. G., and Gibson, T. J., Clustal W: Improving the Sensitivity of Progressive Multiple Sequence Alignment through Sequence Weighting Position-Spesific Gap Penalties and Weight Matrix Choice, Nucleic Acids Res., 1994, vol. 22, pp. 4673–4680.

    Article  PubMed  CAS  Google Scholar 

  22. Jukes, T. H., and Cartor, C. R., Evolution of Protein Molecules, in Mammalian Protein Metabolism, Mundro, H.N., Ed., New York: Academic, 1969, pp. 21–132.

    Google Scholar 

  23. Tamura, K., Dudley, J., Nei, M., and Kumar, S., MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Mol. Biol. Evol., 2007, vol. 24, pp. 1596–1599.

    Article  PubMed  CAS  Google Scholar 

  24. Takii, Y., Takahashi, K., Yamamoto, K., and Suzuki, Y., Bacillus stearothermophilus ATCC 12016 α-Glucosidase Specific for α-1,4 Bonds of Maltosaccharides and α-Glucans Shows High Amino Acid Sequence Similarities to Seven α-D-Glucohydrolases with Different Substrate Specificity, Appl. Microbiol. Biotechnol., 1996, vol. 44, pp. 629–634.

    Article  CAS  Google Scholar 

  25. Malá, S. and Králová, B., Heterooligosaccharide Synthesis Catalyzed by α-Glucosidase from Bacillus stearothermophilus, J. Mol. Catal. B:Enzym., 2000, vol. 10, pp. 617–621.

    Article  Google Scholar 

  26. Suzuki, Y., Yuki, T., Kishigami, T., and Abe, S., Purification and Properties of Extracellular α-Glucosidase of a Thermophile, Bacillus thermoglucosidius KP 1006, Biochim. Biophys. Acta., 1976, vol. 445, pp. 386–397.

    PubMed  CAS  Google Scholar 

  27. Thirunavukkarasu, M. and Priest, F.G., Purification and Characterization of an Extracellular and a Cellular α-Glucosidase from Bacillus licheniformis, J. Gen. Microbiol., 1984, vol. 130, pp. 3135–3141.

    CAS  Google Scholar 

  28. Nazina, T.N., Tourova, T.P., Poltaraus, A.B., Novikova, E.V., Grigoryan, A.A., Ivanova, A.E., Lysenko, A.M., Petrunyaka, V.V., Osipov, G.A., Belyaev, S.S., and Ivanov, M.V., Taxonomic Study of Aerobic Thermophilic Bacilli: Descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from Petroleum Reservoirs and Transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the New Combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans, Int. J. Syst. Evol. Microbiol., 2001, vol. 51, pp. 433–446.

    PubMed  CAS  Google Scholar 

  29. Rolfsmeier, M., Haseltine, C., Bini, E., Clark, A., and Blum, P. Molecular Characterization of the α-Glucosidase Gene (malA) from the Hyperthermophilic Archaeon Sulfolobus solfataricus, J. Bacteriol., 1998, vol. 180, pp. 1287–1295.

    PubMed  CAS  Google Scholar 

  30. Suzuki, Y., Yonezawa, K., Hattori, M., and Takii, Y., Assignment of Bacillus thermoamyloliquefaciens KO1071 α-Glucosidase I to an Exo-α-1,4-Glucosidase, and its Striking Similarity to Bacillary Oligo-1,6-Glucosidases in N-Terminal Sequence and in Structural Parameters Calculated from the Amino Acid Composition, Eur. J. Biochem., 1992, vol. 205, pp. 249–256.

    Article  PubMed  CAS  Google Scholar 

  31. Ash, C., Priest, F. G., and Collins M. D., Molecular Identification of rRNA Group 3 Bacilli (Ash, Farrow, Wallbanks, and Collins, M.D.) Using a PCR Probe Test. Proposal for the Creation of a New Genus. Paenibacillus, Antonie van Leeuwenhoek Microbiol. Serol., 1993, vol. 64, pp. 253–260.

    Article  CAS  Google Scholar 

  32. Rainey, F. A., Fritze, D., and Stackebrandt, E., The Phylogenetic Diversity of Thermophilic Members of the Genus Bacillus as Revealed by 16S rDNA Analysis, FEMS Microbiol. Lett., 1994, vol. 115, pp. 205–212.

    Article  PubMed  CAS  Google Scholar 

  33. Hobel, C.F.V., Marteinsson, V.T., Hreggvidsson, G.Ó., and Kristjánsson, J.K., Investigation of the Microbial Ecology of Intertidal Hot Springs by Using Diversity Analysis of 16S rDNA and Chitinase Genes, Appl. Environ. Microbiol., 2005, vol. 71, pp. 2771–2776.

    Article  PubMed  CAS  Google Scholar 

  34. Urlaub, H. and Wober, G., Alpha-Glucosidase, a Membrane-Bound Enzyme of Alpha-Glucan Metabolism in Bacillus amyloliquefaciens. Purification and Partial Characterization, Biochim. Biophys. Acta., 1978, vol. 522, pp. 161–173.

    PubMed  CAS  Google Scholar 

  35. Nakao, M., Nakayama, T., Harada, M., Kakudo, A., Ikemoto, H., Kobayashi, S., and Shibano, Y., Purification and Characterization of Bacillus sp. SAM1606 Thermostable Alpha-Glucosidase with Transglucosylation Activity, Appl. Microbiol. Biotechnol., 1994, vol. 41, pp. 337–343.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Cokmus.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coleri, A., Cokmus, C., Ozcan, B. et al. Isolations of α-glucosidase-producing thermophilic bacilli from hot springs of Turkey. Microbiology 78, 56–66 (2009). https://doi.org/10.1134/S0026261709010081

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261709010081

Key words

Navigation