Skip to main content
Log in

Lithotrophic microorganisms of the oxidative cycles of sulfur and iron

  • Review
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The review deals with sulfur bacteria (the first chemolithotrophs ever studied) and with the acidophilic bacteria of sulfur and iron cycles which were investigated as a result of Winogradsky’s discovery. The diversity of these organisms and the factors and mechanism of its origin are emphasized; their metabolic functions and nutritional regulation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vinogradskii, S.N., Sulfur Bacteria. Nitrification, in Mikrobiologiya pochvy. Problemy i metody (Soil Microbiology: Problems and Methods), Moscow: Akad. Nauk SSSR, 1952, pp. 25–60.

    Google Scholar 

  2. Vinogradskii, S.N., Osnovy ekologicheskoi mikrobiologii (Basics of the Ecological Microbiology), Moscow: Akad. Nauk SSSR, 1952.

    Google Scholar 

  3. Schulz, H.N. and Jörgensen, B.B., Big Bacteria, Annu. Rev. Microbiol., 2001, vol. 55, pp. 105–137.

    Article  PubMed  CAS  Google Scholar 

  4. Garrity, G.M., Bell, Y.A., and Lilburn, T., Family Thiothrichaceae fam. nov., Bergey’s Manual of Systematic Bacteriology. 2nd ed., Garrity, G.M. et al., Eds., New York: Springer, 2005, vol. 2, part B, pp. 131–179.

    Google Scholar 

  5. Dubinina, G.A., Rainey, F., and Kuenen, J.G., Genus Macromonas Utermöhl and Koppe in Koppe 1924, Bergey’s Manual of Systematic Bacteriology, 2nd ed., Garrity, G.M. et al., Eds., New York: Springer, 2005, vol. 2, part C, pp. 721–724.

    Google Scholar 

  6. Kuenen, J.G. and Dubinina, G.A., Genus Thiospira Vislouk, Bergey’s Manual of Systematic Bacteriology, 2nd ed., Garrity, G.M., Ed., New York: Springer, 2005, vol. 2, part B, pp. 178–179.

    Google Scholar 

  7. Robertson, L.A., Kuenen, Y.G., Paster, B.Y., Dewhirst, F.E., and Vandamme, P., Cenus Thiovulum Hinze 1913, Bergey’s Manual of Systematic Bacteriology, 2nd ed., Garrity, G.M. et al., Eds., New York: Springer, 2005, vol. 2, part B, pp. 1189–1191.

    Google Scholar 

  8. Dubinina, G.A., Leshcheva, N.V., and Grabovich, M.Yu., Isolation and Taxonomic Characterization of Colorless Sulfur Bacteria of the Genus Thiodendron, Mikrobiologiya, 1993, vol. 62, no. 4, pp. 717–732.

    CAS  Google Scholar 

  9. Guerrero, R., Haselton, A., Sole, M., Wier, A., and Margulis, L., Titanospirillum velox: a Huge Speedy Sulfur-Storing Spirillum from Ebro Delta Microbial Mats, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 11584–11588.

    Article  PubMed  CAS  Google Scholar 

  10. Riviere, J.W.M and Kuenen, J.G, Genus Thiobacterium Nom. Rev., Bergey’s Manual of Systematic Bacteriology. 1st ed., Holt, J.G. et al., Eds., Baltimore: Williams. Wilkins Co, 2005, vol. 3, p. 1838.

    Google Scholar 

  11. Podkopaeva, D.A., Grabovich, M.Yu., Tourova, T.P., and Dubinina, G.A., The Functional Role of Reduced Inorganic Sulfur Compounds in the Metabolism of the Microaerophilic Bacterium Spirillum winogradskii, Mikrobiologiya, 2005, vol. 74, no. 1, pp. 17–25 [Microbiology (Engl. Transl.), vol. 74, no. 1, pp. 12–19].

    CAS  Google Scholar 

  12. Grabovich, M.Ju., Gavrish, E., Kuever, I., Lysenko, A., Podkopaeva, D., and Dubinina, G., Proposals of Giesbergeria gen. nov. for Giesbergeria voronezhensis sp. nov., G. kuznetsovii sp. nov. and Reclassification of [Aquaspirillum] anulus, [A.] sinuosum, [A.] giesbergeri as Giesbergeria anulus comb. nov., G. sinuosa comb. nov., G. giesbergeri comb. nov. and of Simplicispira gen. nov. for [Aquaspirillum] metamorphum and [A.] psychrophilum as Simplicispira metamorpha comb. nov. and S. psychrophila comb. nov., Int. J. Syst. Evol. Microbiol., 2006, vol. 56, pp. 569–576.

    Article  PubMed  CAS  Google Scholar 

  13. Grabovich, M.Yu., Biodiversity of Colorless Sulfur Bacteria: Taxonomy, Metabolism, and its Regulation, Extended Abstract of Doctoral (Biol.) Dissertation, Saratov, 2005.

  14. Dul’tseva, N.M., Dubinina, G.A., and Lysenko, A.M., Isolation of Marine Filamentous Sulfur Bacteria and Description of the New Species Leucothrix thiophila sp. nov., Mikrobiologiya, 1996, vol. 65, no. 1, pp. 89–98 [Microbiology (Engl. Transl.), vol. 65, no. 1, pp. 70–87].

    CAS  Google Scholar 

  15. Grabovich, M.Yu., Dul’tseva, N.M., and Dubinina, G.A., Carbon and Sulfur Metabolism in Representatives of Two Clusters of Bacteria of the Genus Leucothrix: A Comparative Study, Mikrobiologiya, 2002, vol. 71, no. 3, pp. 301–307 [Microbiology (Engl. Transl.), vol. 71, no. 3, pp. 255–261].

    Google Scholar 

  16. Grabovich, M.Yu., Muntyan, M.S., Lebedeva, M.S., Ustiyan, V.S., and Dubinina, G.A., Lithotrophic Growth and Electron Chain Components of the Filamentous Glinding Bacterium Leucothrix mucor DSM 2157 During Oxidation of Sulfur Compounds, FEMS Microbiol. Lett., 1999, vol. 178, pp. 155–161.

    Article  CAS  Google Scholar 

  17. Grabovich, M.Yu., Akimov, V.N., Lysenko, A.M., Gridneva, E.V., Chernousova, E.V., and Dubinina, G.A., The First Representative of Lithotrophic Sulfur Bacterial Genus Sphaerotilus, S. gallus sp. nov., Isolated From Sulfide Springs of Psekup Mineral Waters, Mikrobiologiya (in press).

  18. Larkin, J.M. and Henk, M.G., Filamentous Sulfide-Oxidizing Bacteria at Hydrocarbon Seeps on the Gulf of Mexico, Microsc. Res. Tech, 1996, vol. 33, pp. 23–31.

    Article  PubMed  CAS  Google Scholar 

  19. Strohl, W.R., Genus Beggiatoa Trevisan 1842, Bergey’s Manual of Systematic Bacteriology, 2nd ed, Garrity, G.M. et al., Eds., New York: Springer, 2005, vol. 2, part C, pp. 148–161.

    Google Scholar 

  20. Grabovich, M.Yu., Dubinina, G.A., Lebedeva, V.Yu., and Churikova, V.V., Mixotrophic and Lithoheterotrophic Growth of the Freshwater Filamentous Sulfur Bacterium Beggiatoa leptomitiformis D-402, Mikrobiologiya, 1998, vol. 67, no. 4, pp. 464–470 [Microbiology (Engl. Transl.), vol. 67, no. 4, pp. 383–388].

    Google Scholar 

  21. Grabovich, M.Yu., Patritskaya, V.Yu., Muntyan, M.S., and Dubinina, G.A., Lithoautorophic Growth of the Freshwater Strain Beggiatoa D402 and Energy Conservation in a Homogeneous Culture Under Microoxic Conditions, FEMS Microbiol. Lett., 2001, vol. 204, pp. 341–345.

    Article  PubMed  CAS  Google Scholar 

  22. Schulz, H.N., Strotmann, B., Gallardo, V.A., and Jörgensen, B.B., Population Study of the Filamentous Sulfur Bacteria Thioploca spp. of the Bay Concepcion, Chile, Mar. Ecol. Progr. Ser., 2000, vol. 200, pp. 117–126.

    CAS  Google Scholar 

  23. Unz, R.F. and Head, I.M., Genus Thiothrix Winogradsky 1882, Bergey’s Manual of Systematic Bacteriology, 2nd ed., Garrity, G.M. et al., Eds., New York: Springer, 2005, vol. 2, part C, pp. 131–142.

    Google Scholar 

  24. Kojima, H., Teske, A., and Fukui, M., Morphological and Phylogenetic Characterizations of Freshwater Thioploca Species from Lake Biwa, Japan and Lake Konstanz, Germany, Appl. Environ. Microbiol., 2003, vol. 69, pp. 390–398.

    Article  PubMed  CAS  Google Scholar 

  25. Zemskaya, T.I., Namsaraev, B.B., Dul’tseva, N.M., Khanaeva, T.A., Golobokova, L.P., Dubinina, G.A., Dulov, L.E., and Vada, E., Ecophysiological Characteristics of the Mat-forming Bacterium Thioploca in Bottom Sediments of the Frolikha Bay, Northern Baikal, Mikrobiologiya, 2001, vol. 70, no. 3, pp. 391–397 [Microbiology (Engl. Transl.), vol. 70, no. 3, pp. 335–341].

    Google Scholar 

  26. Shulz, H.N., Brinkhoff, T.G., Ferdelman, T.G., Marine, M.H., Teske, A., and Jörgensen, B.B., Dense Populations of a Giant Sulfur Bacterium in Namibian Shelf Sediments, Science, 1999, vol. 284, pp. 493–495.

    Article  Google Scholar 

  27. Babenzin, H.-D., Glöckner, F.O., and Head, I.M., Genus Achromatium Schewiakoff 1893, Bergey’s Manual of Systematic Bacteriology, 2nd ed., Garrity, G.M. et al., Eds., New York: Springer, 2005 vol. 2, part B, pp. 142–147.

    Google Scholar 

  28. Starr, M.P. and Schmidt, J.M., Prokaryote Diversity, The Prokaryotes, Starr, M.P., Stolp, H., Trüper, H.G., Ballows, H., Shlegel, H.G., Eds., Berlin: Springer, 1981, vol. 1, pp. 3–42.

    Google Scholar 

  29. Wirsen, C.O. and Jannasch, H.W., Physiological and Morphological Observations on Thiovulum sp., J. Bacteriol., 1978, vol. 136, pp. 765–774.

    PubMed  CAS  Google Scholar 

  30. Dubinina, G.A., Grabovich, M.Yu., Lysenko, A.M., and Chernykh, N.A., Revision of the Taxonomic Position of the Sulfur Spirilli of the Genus Thiospira and Description of the new Species Aquaspirillumbipunctata comb. nov., Mikrobiologiya, 1993, vol. 62, no. 6, pp. 1101–1112.

    Google Scholar 

  31. Chen, F., Gonzalez, J.M., Dustman, W.A., Moran, M.A., and Hodson, R.E., In Situ Reverse Transcription, an Approach to Character, Appl. Environ. Microbiol., 1997, vol. 63, pp. 4907–4913.

    PubMed  CAS  Google Scholar 

  32. Güde, H., Strohl, W.R., and Larkin, J.M., Mixothrophic and Heterothophic Growth of Beggiatoa alba in Continuous Culture, Arch. Microbiol., 1981, vol. 129, pp. 357–360.

    Article  PubMed  Google Scholar 

  33. Hagen, K.D. and Nelson, D.C., Use of Reduced Sulfur Compounds by Beggiatoa spp.: Enzymology and Physiology of Marine and Freshwater Strains in Homogencous and Gradient Cultures, App. Environ. Microbiol., 1997, vol. 63, pp. 3957–3964.

    CAS  Google Scholar 

  34. Spiridonova, E.M., Turova, T.P., Berg, I.A., Kolganova, T.V., Ivanovskii, R.N., and Kuznetsov, B.B., An Oligonucleotide Primer System for Amplification of the Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase Genes of Bacteria of Various Taxonomic Groups, Mikrobiologiya, 2004, vol. 73, no. 3, pp. 377–387 [Microbiology (Engl. Transl.), vol. 73, no. 3, pp. 316–325].

    CAS  Google Scholar 

  35. Nelson, D.C. and Castenholz, R.W., Use of Reduced Sulfur Compounds by Beggiatoa Sp, J. Bacteriol., 1981, vol. 147, pp. 140–154.

    PubMed  CAS  Google Scholar 

  36. Schmidt, T.M., Arieli, B., Cohen, Y., Padan, E., and Strohl, W.R., Sulfur Metabolism in Beggiatoa alba, J. Bacteriol., 1987, vol. 169, pp. 5466–5472.

    PubMed  CAS  Google Scholar 

  37. Shively, J.M., Devore, W., Statford, L., Porter, L., Medlin, L., and Stevely, J.M., Molecular Evolution of the Large Subunit of Ribuloso-Bisphosphate Carboxylase Oxygenase (RUBISCO), FEMS Microbiol. Lett., 1986, vol. 37, pp. 251–257.

    Article  CAS  Google Scholar 

  38. Unz, R.F. and Williams, T.M., Substrate Untilization by Filamentous Sulur Bacteria of Activated Sludge, Recent Advances in Microbial Ecology., Proc. 5th Int. Symp. Microbial Ecol. (ISME), Hattori, J. and Morita, M., Eds., Tokyo: Japan Soc. Press, 1989, pp. 412–416.

    Google Scholar 

  39. Odintsova, E.V. and Dubinina, G.A., Thiothrix ramosa sp. nov., a New Colorless Sulfur Bacterium, Mikrobiologiya, 1991, vol. 59, no. 4, pp. 437–445.

    Google Scholar 

  40. Odintsova, E.V. and Dubinina, G.A., Role of Reduced Sulfur Compounds in Thiothrix ramosa Metabolism, Mikrobiologiya, 1993, vol. 62, no. 2, pp. 213–222.

    CAS  Google Scholar 

  41. Odintsova, E.V., Wood, A.P., and Kelly, D.P., Chemolithoautotrophic Growth of Thiothrix ramosa, Arch. Microbiol., 1993, vol. 160, pp. 152–157.

    Article  CAS  Google Scholar 

  42. Dul’tseva, N.M. and Dubinina, G.A., Thiothrix arctophila sp. nov., a New Species of Filamentous Colorless Sulfur Bacteria, Mikrobiologiya, 1994, vol. 63, no. 2, pp. 275–281.

    Google Scholar 

  43. Dul’tseva, N.M., Dubinina, G.A., and Lysenko, A.M., Isolation of Marine Filamentous Sulfur Bacteria and Description of the New Species Leucothrix thiophila sp. nov., Mikrobiologiya, 1996, vol. 65, no. 1, pp. 89–98 [Microbiology (Engl. Transl.), vol. 65, no. 1, pp. 79–87].

    CAS  Google Scholar 

  44. Howarth, R., Unz, R.F., Seviour, E.M., Seviour, R.J., Blackall, R.W., Pickup, J.G., Jones, J., Yaguhi, J., and Head, J.M., Phylogenetic Relationships of Filamentous Sulfur Bacteria (Thiothrix spp. and Eikelboom Type 021N Bacteria) Isolated from Waste Water: Treatment Plans and Description of Thiothrix eikelboomii, sp. nov., T. unzii sp. nov., T. fructosivorans sp. nov. and T. defluvii sp. nov., Int. J. Syst. Bacteriol., 1999, vol. 49, pp. 1817–1827.

    PubMed  CAS  Google Scholar 

  45. Nelson, D.C., Physiology and Biochemistry of Filamentous Bacteria, Autotrophic Bacteria, Schlegel, H.G. and Bowien, B., Eds., Berlin: Springer, 1989, pp. 219–238.

    Google Scholar 

  46. Hagen, K.D. and Nelson, D.C., Use of Reduced Sulfur Compounds by Beggiatoa spp.: Enzymology and Physiology of Marine and Freshwater Strains in Homogencous and Gradient Cultures, Appl. Environ. Microbiol., 1997, vol. 63, pp. 3957–3964.

    PubMed  CAS  Google Scholar 

  47. Dubinina, G.A., Akimov, V.N., Chernousova, E.V., Lysenko, A.M., and Grabovich, M.N., New Lithotrophic Sulfur Bacteria of the Genus Thiothrix from Moderately Thermal Sulfide Springs, Mikrobiologiya (in press).

  48. Mc. Hatton, S.C., Barry, J.P., Jannasch, H.W., and Nelson, D.C., High Nitrate Concentrations in Vacuolated, Autotrophic Marine Beggiatoa spp., Appl. Environ. Microbiol., 1996, vol. 62, pp. 954–958.

    CAS  Google Scholar 

  49. Maier, S.H., Volker, H., Beese, M., Gallardo, V.A., The Fine Structure of Thioploca araucae and Thioploca chileae, Can. J. Microbiol., 1990, vol. 36, pp. 438–448.

    Google Scholar 

  50. Nihino, M.H. and Nakajima, T., Dense Mat of Thioploca, Gliding Sulfur-Oxidiing Bacteria in Lake Biwa, Central Japan, Water Res., 1998, vol. 32, pp. 953–957.

    Article  Google Scholar 

  51. Otte, S., Kuenen, J.G., Nielsen, I.P., Paerl, H.W., Zopfi, J., Schulz, N.H., Teske, A., Strotmann, B., Gallardo, V.A., and Jörgensen, B.B., Nitrogen, Carbon and Sulfur Metabolism in Natural Thioploca Sample, Appl. Environ. Microbiol., 1999, vol. 65, pp. 3148–3157.

    PubMed  CAS  Google Scholar 

  52. Fenchel, T. and Glud, R.N., Veil Architercutre in a Sulphide-Oxidizing Bacterium Enhances Counterconter Flux, Nature, 1998, vol. 394, pp. 367–369.

    Article  CAS  Google Scholar 

  53. Gray, N.D., Piscup, R.W., Jones, J.G., and Head, I.M., Ecophysiological Evidence That Achromaitium oxaliferum is Responsible for the Oxidation of Reduced Sulfur Species to Sulfate in a Freshwater Sediment, Appl. Environ. Microbiol., 1997, vol. 63, pp. 1905–1910.

    PubMed  CAS  Google Scholar 

  54. Nesterov, A.I., Gorlenko, V.M., Starynin, D.A., Namsaraev, B.B., Dubinina, G.A., Dul’tseva, N.M., and Tarasov, V.G., Effect of Hydrothermal Influx on the Microbiological Processes of Organic Matter Synthesis in the Kraternaya Bay, in Melkovodnye gidrotermy i ekosistema bukhty Kraternaya, Yaponskoe more. Kniga 1. gl. 1 (Shallow-Water Hydrotherms and the Ecosystem of the Kraternaya Bay, Sea of Japan), Vladivostok: Izvo DVO AN SSSR, 1991, pp. 130–153.

    Google Scholar 

  55. Fossing, H., Gallardo, V.A., Jörgensen, B.B., Hiittel, M., Nielsen, L.P., Schulz, H., et al., Concentration and Transport of Nitrate by the Mat-Forming Sulphur Bacterium Thioploca, Nature, 1995, vol. 374, pp. 713–715.

    Article  CAS  Google Scholar 

  56. Jannasch, H.W., Nelson, D.C., and Wirsen, C.O., Massive Natural Occurrence of Unusually Large Bacteria (Beggiatoa sp.) at a Hydrothermal Deep-Sea Vent Site, Nature, 1989, vol. 342, pp. 834–836.

    Article  CAS  Google Scholar 

  57. Nelson, D.C., Waterbury, J.B., and Jannasch, H.W., Nitrogen fixation and Nitrate Utilization by Marine and Freshwater Beggiatoa, Arch. Microbiol., 1982, vol. 133, pp. 172–177.

    Article  CAS  Google Scholar 

  58. Sweerts, J.P.R.A., De Beers, D., Nielsen, S.P., Verdouw, H., Cohen, Y., and Cappenberg, T.E., Denitrification by Sulfur Oxidizing Beggiatoa spp. Mats on Freshwater Sediments, Nature, 1990, vol. 344, pp. 762–763.

    Article  CAS  Google Scholar 

  59. Kalanetra, K.M., Sherry, L., Huston, L., and Neson, D., Novel, Attached, Sulfur-Oxidizing Bacteria at Shallow Hydrothermal Vents Posses Vacuoles Not Involved in Respiratory Nitrate Accumulation, Appl. Environ. Microbiol., 2004, vol. 70, pp. 7487–7496.

    Article  PubMed  CAS  Google Scholar 

  60. Dubinina, G.A., Colorless Sulfur Bacteria, in Khemosintez. K 100-letiyu otkrytiya S.N. Vinogradskim (Chemosynthesis. 100th Anniversary of S.N. Winogradsky’s Discovery), Moscow: Nauka, 1989, pp. 75–100.

    Google Scholar 

  61. Stepanova, I.Yu., Eprintsev, A.T., Falaleeva, M.I., Parfenova, N.V., Grabovich, M.Yu., Patritskaya, V.Yu., and Dubinina, G.A., Dependence of Malate Dehydrogenase Structure on the Type of Metabolism in Freshwater Filamentous Colorless Sulfur Bacteria of the Genus Beggiatoa, Mikrobiologiya, 2002, vol. 71, no. 4, pp. 445–451 [Microbiology (Engl. Transl.), vol. 71, no. 4, pp.377–382].

    Google Scholar 

  62. Eprintsev, A.T., Falaleeva, M.I., Grabovich, M.Yu., Parfenova, N.V., Kashirskaya, N.N., and Dubinina, G.A., The Role of Malate Dehydrogenase Isoforms in the Regulation of Anabolic and Catabolic Processes in the Colorless Sulfur Bacterium Beggiatoa leptomitiformis D-402, Mikrobiologiya, 2004, vol. 73, no. 4, pp. 437–432 [Microbiology (Engl. Transl.), vol. 73, no. 4, pp. 367–371].

    CAS  Google Scholar 

  63. Muntyan, M.S., Grabovich, M.Yu., Patritskaya, V.Yu., and Dubinina, G.A., Regulation of Metabolic and Electron Transport Pathways in the Freshwater Bacterium Beggiatoa leptomitiformis D-402, Mikrobiologiya, 2005, vol. 74, no. 4, pp. 452–459 [Microbiology (Engl. Transl.), vol. 74, no. 4, pp. 388–394].

    Google Scholar 

  64. Nelson, D.C., Wirsen, C.O., and Jannasch, A.W., Characterization of Large, Autotrophic Beggiatoa spp. Abundant at Hydrothermal Vent of Guaymas Basin, Appl. Environ. Microbiol, 1989, vol. 55, pp. 2909–2917.

    PubMed  CAS  Google Scholar 

  65. Gallardo, V.A., Large Benthic Microbial Communities in Sulfide Biota Under Peru-Chile Subsurface Counter Current, Nature, 1977, vol. 286, pp. 331–332.

    Article  Google Scholar 

  66. Larkin, J.M. and Strohl, W.R., Beggiatoa, Thiothrix, and Thioploca, Annu. Rev. Microbiol., 1983, vol. 37, pp. 341–367.

    Article  PubMed  CAS  Google Scholar 

  67. Williams, T.M. and Unz, R.F., Filamentous Sulfur Bacteria of Activated Sludge: Characterization of Thiothrix, Beggiatoa and Eikelboom Type 021 N Strain, Appl. Environ. Microbiol., 1985, vol. 49, pp. 887–898.

    PubMed  CAS  Google Scholar 

  68. Fukui, A.M., Teske, A., Assmus, B., Muyzer, G., and Widdel, F., Phygiology, Phylogenetic Relationships, and Ecology of Filamentius Sulfate-Reducing Bacteria (Genus Desulfonema), Arch. Microbiol., 1999, vol. 172, pp. 193–203.

    Article  PubMed  CAS  Google Scholar 

  69. Lein, A.Yu., Pimenov, N.V., Vinogradov, M.E., and Ivanov, M.V., CO2 Assimilation Rate and Bacterial Production of Organic Matter above the Hydrothermal Fields at 26N and 29N at the Mid-Atlantic Ridge, Okeanologiya, 1997, vol. 37, no. 3, pp. 396–407 [Oceanology (Engl. Transl.), vol. 37, no. 3].

    CAS  Google Scholar 

  70. Polz, M.F., Robinson, J.J., Cavanaugh, C.M., and Van Dover, C.L., Trophic Ecology of the Massive Aggregations of the Hydrothermal Vent Shrimp Rimicaris exoculata, Limnol. Oceanogr., 1998, vol. 43, pp. 1631–1638.

    Article  CAS  Google Scholar 

  71. Dulov, L.E., Lein, A.Yu., Dubinina, G.A., and Pimenov, N.V., Microbial Processes at the Lost City Vent Field, Mid-Atlantic Ridge, Mikrobiologiya, 2005, vol. 74, no. 1, pp. 111–118 [Microbiology (Engl. Transl.), vol. 74, no. 1, pp.97–104].

    CAS  Google Scholar 

  72. Perfil’ev, B.V., Thiodendron latens, a New Iron-Sulfur Microorganism and its Cultivation in Selective Cultures, Izv. Akad. Nauk SSSR, Ser. Biol., 1969, no. 2, pp. 181–196.

  73. Podkopaeva, D.A., Grabovich, M.Yu., and Dubinina, G.A., Oxidative Stress and Antioxidant Cell Protection Systems in the Microaerophilic Bacterium Spirillum winogradskii, Mikrobiologiya, 2003, vol. 72, no. 5, pp. 600–608 [Microbiology (Engl. Transl.), vol. 72, no. 5, pp. 534–541].

    CAS  Google Scholar 

  74. Podkopaeva, D.A., Grabovich, M.Yu., and Dubinina, G.A., The Functional Role of Reduced Inorganic Sulfur Compounds in the Metabolism of the Microaerophilic Bacterium Spirillum winogradskii, Microbiologiya, 2005, vol. 74, no. 1, pp. 17–25 [Microbiology (Engl. Transl.), vol. 74, no. 1, pp. 12–19].

    CAS  Google Scholar 

  75. Dubinina, G.A., Grabovich, M.Yu., Churikova, V.V., Chekanova, Yu.A., and Leshcheva, N.V., N2O2 Production by Beggiatoa leptomitiformis, Mikrobiologiya, 1990, vol. 59, no. 4, pp. 425–431.

    CAS  Google Scholar 

  76. Chekanova, Yu.A. and Dubinina, G.A., Cytochemical Determination of Localization of N2O2 and Superoxide Radicals in Colorless Sulfur Bacteria, Mikrobiologiya, 1990, vol. 59, no. 5, pp. 856–861.

    CAS  Google Scholar 

  77. Akimenko, V.K., Cyanide-Resistant Respiration in Microorganisms, Uspekhi Mikrobiol., 1981, no. 5, pp. 3–30.

  78. Perfil’ev, B.V., Thiodendron latens, a New Sulfur-Iron Microorganism and its Cultivation in Selective Cultures, Izv. Akad. Nauk SSSR, Ser. Biol., 1969, no. 2, pp. 181–196.

  79. Dubinina, G.A., Grabovich, M.Yu., and Leshcheva, N.V., Structure, Distribution, and Metabolic Activity of the Thiodendron sulfur mats in Saline Reservoirs of Different Types, Mikrobiologiya, 1993, vol. 62, no. 3, pp. 340–350.

    Google Scholar 

  80. Dubinina, G.A., Grabovich, M.Yu., and Chernyshova, Yu.A., The Role of Oxygen in the Regulation of the Metabolism of Aerotolerant Spirochetes, a Major Component of “Thiodendron” Bacterial Sulfur Mats, Mikrobiologiya, 2004, vol. 73, no. 6, pp. 725–733 [Microbiology (Engl. Transl.), vol. 73, no. 6, pp. 621–628].

    CAS  Google Scholar 

  81. Leshcheva, R.V., Biological Characteristics of Colorless Sulfur Bacteria of the Genus Thiodendron, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Moscow, 1997.

  82. Surkov, A.V., Dubinina, G.A., Lysenko, A.M., Glökner, F.O., and Küever, J., Dethiosulfovibrio russensis sp. nov., Dethiosulfovibrio marinus sp. nov. and Dethiosulfovibrio acidaminovorans sp. nov., Novel Anaerobic, Thiosulfate-and Sulfur-Reducing Bacteria Isolated from Thiodendron Sulfur Mats in Different Saline Environments, Int. J. Syst. Evol. Microbiol., 2001, vol. 51, pp. 327–337.

    PubMed  CAS  Google Scholar 

  83. Brock, T.D. and Gustafson, J., Ferric-Iron Reduction by Sulfur-and Iron-Oxidizing Bacteria, Appl. Environ. Microbiol., 1976, vol. 32, pp. 567–571.

    PubMed  CAS  Google Scholar 

  84. Golovacheva, R.S. and Karavaiko, G.I., Sulfobacillus thermosulfidooxidans gen. nov., sp. nov., a Facultatively Thermophilic Organism Isolated from a Sulfide Ore Deposit, Mikrobiologiya, 1978, vol. 47, no. 5, pp. 815–822.

    CAS  Google Scholar 

  85. Melamud, V.S., Pivovarova, T.A., Turova, T.P., Kolganova, T.V., Osipov, T.A., Lysenko, A.M., Kondrat’eva, T.F., and Karavaiko, G.I., Sulfobacillus sibiricus sp. nov., a New Moderately Thermophilic Bacterium, Mikrobiologiya, 2003, vol. 72, no. 5, pp. 681–688 [Microbiology (Engl. Transl.), vol. 72, no. 5, pp. 605–612].

    CAS  Google Scholar 

  86. Bogdanova, T.I., Tsaplina, I.A., Kondrat’eva, T.F., Duda, V.I., Suzina, N.E., Melamud, V.S., Turova, T.P., and Karavaiko, G.I., Sulfobacillus thermotolerans sp. nov., a Thermotolerant, Chemolithotrophic Bacterium, Int. J. Syst. Evol. Microbiol, 2006, vol. 56, pp. 1039–1042.

    Article  PubMed  CAS  Google Scholar 

  87. Segerer, A., Neuner, A., Kristjansson, J.K., and Stetter, K.O., Acidianus infernus gen. nov., sp. nov., and Acidianus brierleyi comb. nov.: Facultatively Aerobic, Extremely Acidophilic Thermophilic Sulfur-Metabolizing Archaebacteria, Int. J. Syst. Bacteriol., 1986, vol. 36, pp. 559–564.

    Google Scholar 

  88. Huber, H. and Stetter, K.O., Genus Acidianus, Bergey’s Manual of Systematic Bacteriology. 2nd ed., Garrity, G.M. et al., Eds., New York: Springer, 2001, pp. 202–204.

    Google Scholar 

  89. Huber, G., Spinler, C., Gambacorta, A., and Stetter, K.O., Metallosphaera sedula gen. and sp. nov. Represents a New Genus of Aerobic Metal-Mobilizing, Thermoacidophilic Archaebacteria, Syst. Appl. Microbiol., 1998, vol. 12, pp. 38–47.

    Google Scholar 

  90. Fuchs, T., Huber, H., Teiner, T., Burggraf, S., and Stetter, K.O., Metallosphaera prunae, sp. nov., a Novel Metal-Mobilizing, Thermoacidophilic Archaeum, Isolated from a Uranium Mine in Germany, Syst. Appl. Microbiol., 1995, vol. 18, pp. 560–566.

    Google Scholar 

  91. Karavaiko, G.I., Golyshina, O.V., Troitskii, A.V., Val’ekho-Roman, K.M., Golovacheva, R.S., and Pivovarova, T.A., Sulfurococcus yellowstonensis sp. nov., a New Species of Iron-and Sulfur-Oxidizing Thermoacidophilic Archaebacterium, Mikrobiologiya, 1994, vol. 63, no. 4, pp. 668–682.

    CAS  Google Scholar 

  92. Huber, G. and Stetter, K.O., Sulfolobus metallicus, sp. nov., a Novel Strictly Chemolithoautotrophic Thermophilic Archaeal Species of Metal-Mobilizers, Syst. Appl. Microbiol, 1991, vol. 14, pp. 372–378.

    CAS  Google Scholar 

  93. Markosyan, G.E., Leptospirillum ferrooxidans gen. nov. sp. nov, a New Iron-Oxidizing Bacterium, Armenian Biol., 1972, vol. 25, no. 2, pp. 26–29.

    Google Scholar 

  94. Johnson, D.B., Genus II. Leptospirillum, Bergey’s Manual of Systematic Bacteriology. 2nd ed., Garrity, G.M. et al., Eds., New York: Springer, 2005, vol. 2, part C, pp. 453–457.

    Google Scholar 

  95. Golovacheva, R.S., Golyshina, O.V., Karavaiko, G.I., Dorofeev, A.G., Pivovarova, T.A., and Chernykh, N.A., Leptospirillum thermoferrooxidans sp. nov., a New Iron-Oxidizing Bacterium, Mikrobiologiya, 1992, vol. 61, no. 6, pp. 1056–1065.

    CAS  Google Scholar 

  96. Clark, D.A. and Norris, P.R., Acidimicrobium ferrooxidans gen. nov., sp. nov.: Mixed-Culture Ferrous Iron Oxidation with Sulfobacillus Species, Microbiology (UK), 1996, vol. 142, pp. 785–790.

    CAS  Google Scholar 

  97. Golyshina, O.V., Pivovarova, T.A., Karavaiko, G.I., Kondrat’eva, T.F., Moore, E.R., Abraham, W.R., Lansdorf, H., Timmis, K., Yakimov, M.M., and Golyshin, P.N., Ferroplasma acidiphilum gen. nov., sp. nov., an Acidophilic, Autotrophic, Ferrous-Iron-Oxidizing Cell-Wall-Lacking, Mesophilic Member of the Ferroplasmaceae fam. nov., Comprising a Distinct Lineage of the Archaea, Int. J. Syst. Bacteriol., 2000, vol. 50, pp. 997–1006.

    CAS  Google Scholar 

  98. Pivovarova, T.A., Kondrat’eva, T.F., Batrakov, S.G., Esipov, S.E., Sheichenko, V.I., Bykova, S.A., Lysenko, A.M., and Karavaiko, G.I., Phenotypic Features of Ferroplasma acidiphilum Strains YT and Y-2, Mikrobiologiya, 2002, vol. 71, no. 6, pp. 1–10 [Microbiology (Engl. Transl.), vol. 71, no. 6, pp. 698–706].

    Google Scholar 

  99. Edwards, K.J., Bond, P.L., Gihring, T.M., and Baufield, J.F., An Archaeae Iron-Oxidizing Extreme Acidophile Important in Acid Mine Drainage, Science, 2000, vol. 287, pp. 1796–1799.

    Article  PubMed  CAS  Google Scholar 

  100. Waksman, S.A. and Joffe, I.S., Microorganisms Concerned with the Oxidation of Sulfur in Soil. II Thiobacillus thiooxidans, a New Sulfur Oxidizing Organism Isolated from the Soil, J. Bacteriol., 1922, vol. 7, no. 2, pp. 239–256.

    PubMed  CAS  Google Scholar 

  101. Kelly, D.P. and Wood, A.P., Genus I. Acidithiobacillus, Bergey’s Manual of Systematic Bacteriology. 2nd ed., Garrity, G.M. et al., Eds., New York: Springer, 2005, vol. 2, part B, pp. 60–62.

    Google Scholar 

  102. Hallberg, K.B. and Lindstrom, E.B., Characterization of Thiobacillus caldus sp. nov., a Moderately Thermophilic Acidophile, Microbiology (UK), 1994, vol. 140, pp. 3451–3456.

    CAS  Google Scholar 

  103. Bryant, R.D., Mc. Groarty, K.M., Costerton, J.W., Laishly, E.J., Isolation and Characterization of a New Acidophilic Thiobacillus Species (T. albertensis), Can. J. Microbiol., 1983, vol. 29, pp. 1159–1170.

    Article  Google Scholar 

  104. Brock, T.D., Brock, K.M., Belly, R.T., and Weiss, R.L., Sulfolobus: a New Genus of Sulfur-Oxidizing Bacteria Living at Low PH and High Temperature, Arch. Microbiol., 1973, vol. 84, pp. 54–68.

    Google Scholar 

  105. Huber, H. and Stetter, K.O., Genus I. Sulfolobus, Bergey’s Manual of Systematic Bacteriology. 2nd ed., Garrity, G.M. et al., Eds., New York: Springer, 2001, vol. 1, part B, pp. 198–200.

    Google Scholar 

  106. Huber, H. and Stetter, K.O. Genus I. Sulfolobus, Bergey’s Manual of Systematic Bacteriology. 2nd ed., Garrity, G.M. et al., Eds., New York: Springer, 2001, vol. 1, part B, pp. 201–202.

    Google Scholar 

  107. Huber, H. and Stetter, K.O. Genus I. Sulfolobus, Bergey’s Manual of Systematic Bacteriology. 2nd ed., Garrity, G.M. et al., Eds., New York: Springer, 2005, vol. 1, part B, p. 201.

    Google Scholar 

  108. Grogan, D., Palm, P., and Zillig, W., Isolate B12, Which Harbors a Virus-Like Element, Represents a New Species of the Archaebacterial Genus Sulfolobus, Sulfolobus shibatae, sp. nov., Arch. Microbiol., 1990, vol. 154, pp. 594–599.

    Article  PubMed  CAS  Google Scholar 

  109. Takayanagi, S., Kawasaki, H., Sugimori, K., Yamada, T., Sugal, A., Ito, T., Yamasato, K., and Shioda, M., Sulfolobus hakonensis sp. nov., a Novel Species of Acidothermophilic Archaeon, Int. J. Syst. Bacteriol., 1996, vol. 46, no. 2, pp. 377–382.

    PubMed  CAS  Google Scholar 

  110. Segerer, A., Neuner, A., Kristjansson, J.K., and Stetter, K.O., Acidianus infernus gen. nov., sp. nov. and Acidianus brierleyi comp. nov.: Facultatively Aerobic, Extremely Acidophilic Thermophilic Sulfur-Metabolizing Archaebacteria, Int. J. Syst. Bacteriol., 1986, vol. 36, pp. 559–564.

    Article  Google Scholar 

  111. Huber, H. and Stetter, K.O., Genus IV. Stygilobus, Bergey’s Manual of Systematic Bacteriology. 2nd ed., Garrity, G.M. et al., Eds., New York: Springer, 2001, vol. 1, part B, p. 207.

    Google Scholar 

  112. Segerer, A.H., Trincone, A., Gahrtz, M., and Stetter, K.O., Stygiolobus azoricus gen. nov., sp. nov., Represents a Novel Genus of Anaerobic, Extremely Thermoacidophilic Archaebacteria of the Order Sulfolobales, Int. J. Syst. Bacteriol., 1991, vol. 41, pp. 495–501.

    Google Scholar 

  113. Golovacheva, R.S., Val’ekho-Roman, K.M., and Troitskii, A.V., Sulfurococcus mirabilis gen. nov., sp. nov., a New Thermophilic Archaebacterium Capable of Sulfur Oxidation, Mikrobiologiya, 1987, vol. 56, pp. 100–107.

    CAS  Google Scholar 

  114. Fuchs, T., Huber, H., Burggraf, S., and Stetter, K.O., 16SrDNA-Based Phylogeny of the Archaeal Order Sulfolobales and Reclassification of Desulfurolobus ambivalens as Acidianus ambivalens comb. nov., Syst. Appl. Microbiol, 1996, vol. 19, pp. 56–60.

    CAS  Google Scholar 

  115. Huber, H and Stetter, K.O., in Bergey’s Manual of Systematic Bacteriology. 2nd ed, Boone, D.K. and Castenholz, R.W., Eds., New York: Springer, 2001, pp. 202–204.

    Google Scholar 

  116. Karavaiko, G.I., Kondrat’eva, T.F., Pivovarova, T.A., and Muntyan, L.N., Physiological and Genetical Characterization of Some Thiobacillus ferrooxidans Strains Used in Biohydrometallurgy, Prikl. Biokhim. Mikrobiol., 1997, vol. 33, no. 5, pp. 532–538 [Appl. Biochem. Microbiol. (Engl. Transl.), vol. 33, no. 5, pp. 475–480].

    CAS  Google Scholar 

  117. Melamud, V.S., Pivovarova, T.A., Kondrat’eva, T.F., and Karavaiko, G.I., Study of Oxidation by Bacteria of a Difficult-to-Dress Gold-containing Pyrite-Arsenopyrite Concentrate under Moderately Thermophilic Conditions, Prikl. Biokhim. Mikrobiol., 1999, vol. 35, no. 2, pp. 182–189 [Appl. Biochem. Microbiol. (Engl. Transl.), vol. 35, no. 2, pp. 161–167].

    CAS  Google Scholar 

  118. Kondratyeva, T.F., Pivovarova, T.A., Muntyan, L.N., and Karavaiko, G.I., Strain Diversity in Thiobacillus ferrooxidans and its Significance in Biohydrometallugry, Biohydrometallurgy and the Environment toward the Mining of the 21st Century, Amils, R. and Ballester, A., Eds., 1999, part B, pp. 89–96.

  119. Ageeva, S.N., Kondrat’eva, T.F., and Karavaiko, G.I., Phenotypic Characteristics of Thiobacillus ferrooxidans Strains, Mikrobiologiya, 2001, vol. 70, no. 2, pp. 226–234 [Microbiology (Engl. Transl.), vol. 70, no. 2, pp. 186–194].

    CAS  Google Scholar 

  120. Kondrat’eva, T.F., Tupikina, O.V., Ageeva, S.N., Samorukova, V.D., and Karavaiko, G.I., Variability of Chemolithotrophic Microorganisms as a Basis for the Regulation of their Activity Under Extreme Conditions, Biotechnology and Environment Including Biogeotechnology, Zaikov, G.E., Ed., New York: Nova Science Publ., 2004, pp. 133–145.

    Google Scholar 

  121. Karavaiko, G.I., Turova, T.P., Kondrat’eva, T.F., Lysenko, A.M., Kolganova, T.V., Ageeva, S.N., Muntyan, L.N., and Pivovarova, T.A., Phylogenetic Heterogeneity of the Species Acidithiobacillus ferrooxidans, Int. J. Syst. Evol. Microbiol, 2003, vol. 53, pp. 113–119.

    Article  PubMed  CAS  Google Scholar 

  122. Kondratyeva, T.F., Muntyan, L.N., and Karavaiko, G.I., Zinc-and Arsenic Resistant Strains of Thiobacillus ferrooxidans Have Increased Copy Numbers of Chromosomal Resistance Genes, Microbiology (UK), 1995, vol. 141, pp. 1157–1162.

    CAS  Google Scholar 

  123. Haack, K. and Roth, J., Recombination Between Chromosomal IS200 Elements Supports Frequent Duplication Formation in Salmonella typhimurium, Genetics, 1995, vol. 141, pp. 1245–1252.

    PubMed  CAS  Google Scholar 

  124. Pulgar V., Gaete, L., Allende, J., Orellana, O., Jordana, X., and Jedlicki, E., Isolation and Nucleotide Sequence of the Thiobacillus ferrooxidans Genes for the small and Large Subunits of Ribulose 1.5-bisphosphate carboxylase/oxygenase, FEBS Lett., 1991, vol. 292, no. 1, pp. 85–89.

    Article  PubMed  CAS  Google Scholar 

  125. Kusano, T., Takeshima, T., Inoue, Ch., and Sugawara, K., Evidence for Two Sets of Structural Genes Coding for Ribulose Bisphosphate Carboxylase in Thiobacillus ferrooxidans, J. Bacteriol., 1991, vol. 173, pp. 7313–7323.

    PubMed  CAS  Google Scholar 

  126. Holden, P.J. and Brown, R.W., Amplification of Ribulose Bisphosphate/Oxygenase Large Subunit (RuBisCo LCU) Gene Fragments from Thiobacillus ferrooxidans and Moderate Thermophile Using Polymerase Chain Reaction, FEMS Microbiol. Rev., 1993, vol. 11, pp. 19–30.

    Article  PubMed  CAS  Google Scholar 

  127. Peng, H., Yang, Y., and Hu, Y., Molecular Diversity of the Gene of Fe(II)-oxidizing Enzyme of Acidithiobacillus ferrooxidans, 16th Int. Biohydrometallurgy Symposium. Abstracts, Harrison, S.T.L., Rawlings, D.E., and Petersen, J., Eds., Cape Town, 2005, pp. 176–178.

  128. Rawlings, D.E. and Kusano, T., Molecular Genetics of Thiobacillus ferrooxidans, Microbiol. Rev., 1994, vol. 58, pp. 39–55.

    PubMed  CAS  Google Scholar 

  129. Kondrat’eva, T.F., Ageeva, S.N., Muntyan, L.N., Pivovarova, T.A., and Karavaiko, G.I., Strain Polymorphism of the Plasmid Profiles in Acidithiobacillus ferrooxidans, Mikrobiologiya, 2002, vol. 71, no. 3, pp. 373–380 [Microbiology (Engl. Transl.), vol. 71, no. 3, pp. 319–325].

    CAS  Google Scholar 

  130. Tupikina, O.V., Kondrat’eva, T.F., Samorukova, V.D., Rassulov, V.A., and Karavaiko, G.I., Pheno-and Genotypic Caharacteristics of Acidithiobacillus ferrooxidans strains in relation to physicochemical properties of pyrites, 16th Int. Biohydrometallurgy Symposium. Abstracts, Harrison, S.T.L., Rawlings, D.E., and Petersen, J., Eds., Cape Town, 2005, pp. 705–715.

  131. Yates, J.R. and Holmes, D.S., Two Families of Repeated DNA Sequences in Thiobacillus ferrooxidans, J. Bacteriol., 1987, vol. 169, pp. 1861–1870.

    PubMed  CAS  Google Scholar 

  132. Chakravarty, L., Kittle, J.D., and Tuovinen, O.H., Insertion Sequence IST3091 of Thiobacillus ferrooxidans, Can. J. Biol., 1997, vol. 43, pp. 503–508.

    CAS  Google Scholar 

  133. Chakraborty, R., Deb, C., Lohia, A., and Roy, P., Cloning and Characterization of a High Copy Number Novel Insertion Sequence from Chemolithotrophic Thiobacillus ferrooxidans, Plasmid, 1997, vol. 38, pp. 129–134.

    Article  PubMed  CAS  Google Scholar 

  134. Kondrat’eva, T.F., Danilevich, V.N., Ageeva, S.N., and Karavaiko, G.I., Identification of IS Elements in Acidithiobacillus ferrooxidans Grown in a Medium with Ferrous Iron or Adapted to Elemental Sulphur, Arch. Microbiol., 2005, vol. 183, pp. 1–10.

    Article  CAS  Google Scholar 

  135. Kondrat’eva, T.F. and Ageeva, S.N., Strain Genotypic Heterogeneity of Acidophilic Chemolithotrophic Microorganisms, Yubileinyi sbornik k 70-letiyu Instituta, (Proceedings of Winogradsky Institute of Microbiology, vol. 17. Collected Articles on the Institute 70th Anniversary), Gal’chenko, V.F., Ed., Moscow: Nauka, 2004.

    Google Scholar 

  136. Kondrat’eva, T.F., Melamud, V.S., Tsaplina, I.A., Bogdanova, T.I., Senyushkin, A.A., Pivovarova, T.A., and Karavaiko, G.I., Peculiarities in the Chromosomal DNA Structure in Sulfobacillus thermosulfidooxidans Analyzed by Pulsed-Field Gel Electrophoresis, Mikrobiologiya, 1998, vol. 67, no. 1, pp. 19–25 [Microbiology (Engl. Transl.), vol. 67, no. 1, pp. 13–18].

    Google Scholar 

  137. Kondrat’eva, T.F., Pivovarova, T.A., and Karavaiko, G.I., Peculiarities in the Chromosomal DNA Structure in Acidianus brierleyi and Ferriplasma acidophilum Grown under Varied Conditions, Mikrobiologiya, 1999, vol. 68, no. 4, pp. 508–513 [Microbiology (Engl. Transl.), vol. 68, no. 4, pp.443–447].

    Google Scholar 

  138. Kondrat’eva, T.F., Pivovarova, T.A., Muntyan, L.N., and Karavaiko, G.I., Structural Changes in the Chromosomal DNA of Thiobacillus ferrooxidans Cultivated on Media with Various Oxidation Substrates, Mikrobiologiya, 1996, vol. 65, no. 1, pp. 67–73 [Microbiology (Engl. Transl.), vol. 65, no. 1, pp. 59–64].

    CAS  Google Scholar 

  139. Kondrat’eva, T.F., Pivovarova, T.A., and Karavaiko, G.I., Peculiarities in the Structure of Chromosomal DNAs from Thiobacillus ferrooxidans Strains Adapted to Growth on Media with Pyrite or Elemental Sulfur, Mikrobiologiya, 1996, vol. 65, no. 5, pp. 675–681 [Microbiology (Engl. Transl.), vol. 65, no. 5, pp.591–596].

    CAS  Google Scholar 

  140. Kondrat’eva, T.F., Ageeva, S.N., Pivovarova, T.A., and Karavaiko, G.I., Restriction Profiles of the Chromosomal DNA from Acidithiobacillus ferrooxidans Strains Adapted to Different Oxidation Substrates, Mikrobiologiya, 2002, vol. 71, no. 4, pp. 514–520 [Microbiology (Engl. Transl.), vol. 71, no. 4, pp. 438–443].

    CAS  Google Scholar 

  141. Kondrat’eva, T.F., Pivovarova, T.A., Muntyan, L.N., Ageeva, S.N., and Karavaiko, G.I., The Strain Genotypic Heterogeneity of Chemolithotrophic Microorganisms, 15th Int. Biohydrometallurgy Symposium, Athens: Hellas, 2003, pp. 1379–1388.

    Google Scholar 

  142. Tupikina, O.V., Kondrat’eva, T.F., and Karavaiko, G.I., Dependence of the Phenotypic Characteristics of Acidithiobacillus ferrooxidans on the Physical, Chemical, and Electrophysical Properties of Pyrites, Mikrobiologiya, 2005, vol. 74, no. 5, pp. 604–608 [Microbiology (Engl. Transl.), vol. 74, no. 5, pp. 515–521].

    CAS  Google Scholar 

  143. Aggeva, S.N., Kondrat’eva, T.F., and Karavaiko, G.I., Plasmid Profiles of Acidithiobacillus ferrooxidans Strains Adapted to Different Oxidation Substrates, Mikrobiologiya, 2003, vol. 72, no. 5, pp. 651–657 [Microbiology (Engl. Transl.), vol. 72, no. 5, pp. 579–584].

    Google Scholar 

  144. Inoue, C., Sugawara, K., and Kusano, T., The MerR Regulatory Gene in Thiobacillus ferrooxidans Is Spaced Apart from the Mer Structural Genes, Mol. Microbiol., 1991, vol. 5, pp. 2707–2718.

    PubMed  CAS  Google Scholar 

  145. Kondrat’eva, T.F., Danilevich, V.N., Ageeva, S.N., and Karavaiko, G.I., Interaction of Chromosomal and Plasmid DNA in Acidithiobacillus ferrooxidans Strains Adapted to Different Oxidation Substrates, Mikrobiologiya, 2004, vol. 73, no. 3, pp. 368–376 [Microbiology (Engl. Transl.), vol. 73, no. 3, pp. 308–315].

    CAS  Google Scholar 

  146. Holmes, D.S. and Haq, R.U., Adaptation of Thiobacillus ferrooxidans for Industrial Applications, Biohydrometallurgy, Salley, J. et al., Eds., Ottawa: CANMET, 1989, pp. 115–123.

    Google Scholar 

  147. Schrader, A. and Holmes, D.S., Phenotypic Switching of Thiobacillus ferrooxidans, J. Bacteriol., 1988, vol. 170, pp. 3915–3923.

    PubMed  CAS  Google Scholar 

  148. Schrader, A. and Holmes, D.S., Insertion Sequence IST1 and Associated Phenotypic Switching in Thiobacillus ferrooxidans, Biohydrometallurgical Technologies, Torma, A.E. et al., Eds., Wyoming: Metals, Materials, 1993, vol. 2, pp. 667–671.

    Google Scholar 

  149. Cadiz, R., Gaete, L., Jedlicki, E., Yates, J., Holmes, D.S., and Orellana, O., Transposition of IST2 in Thiobacillus ferrooxidans, Mol. Microbiol., 1994, vol. 12, pp. 165–170.

    PubMed  CAS  Google Scholar 

  150. Holmes, D.S., Jedlicki, E., Cabrejos, M.E., Bueno, S., Guacucano, M., Inostroza, C., Levican, G., Varela, P., and Garcia, E., The Use of Insertion Sequences to Analyze Gene Function in Thiobacillus ferrooxidans: a Case Study Involving Cytochrome c-type Biogenesis in Iron Oxidation, Biohydrometallurgy and the Environmental Toward the Mining of the 21st century, Amils, R. and Ballester, A., Eds., Elsevier, 1999, part B, pp. 139–147.

  151. Ingledew, W.J., Cox, J.C., and Halling, P.J., A Proposed Mechanism for Energy Conservation During Fe2+ Oxidation by Thiobacillus ferrooxidans: Chemiosmotic Coupling To Net+ Influx, FEMS Microbiol. Lett., 1984, vol. 2, pp. 193–197.

    Article  Google Scholar 

  152. Cox, J.C. and Brand, M.D., Iron Oxidation and Energy Conservation in the Chemoautotroph Thiobacillus ferrooxidans, Microbial Chemoautotrophy, Strohl, W.R. and Tuovinen, O.H., Eds., Columbus: Ohio State Univ. Press, 1984, pp. 31–46.

    Google Scholar 

  153. Golyshina, O. and Timmis, K.N., Ferroplasma and Relatives, Recently Discovered Cell Wall-Lacking Archaea Making a Living in Extremely Acid, Heavy Metal-Rich Environments, Environ. Microbiol, 2005, vol. 7, pp. 1277–1288.

    Article  PubMed  CAS  Google Scholar 

  154. Avakyan, A.A. and Karavaiko, G.I., Submicroscopic Organization of Thiobacillus ferrooxidans, Mikrobiologiya, 1970, vol. 39, no. 5, pp. 855–861.

    Google Scholar 

  155. Pivovarova, T.A. and Karavaiko, G.I., New Data on the Submicroscopic Organization of Thiobacillus thiooxidans, Mikrobiologiya, 1974, vol. 43, no. 2, pp. 282–284.

    CAS  Google Scholar 

  156. Severina, L.O., Senyushkin, A.A., and Karavaiko, G.I., Ultrastructure and Chemical Composition of Sulfobacillus thermosulfidooxidans S Layer, Dokl. Akad. Nauk, 1993, vol. 328, no. 5, pp. 633–636.

    CAS  Google Scholar 

  157. Severina, L.O., Bacterial S Layers, Mikrobiologiya, 1995, vol. 64, no. 6, pp. 725–733.

    CAS  Google Scholar 

  158. Duda, V.I., Suzina, N.E., Severina, L.O., Dmitriev, V.V., and Karavaiko, G.I., Formation of Flat Lammellar Inframembrane Lipid Structures in Microorganisms, J. Membr. Biol., 2001, vol. 180, pp. 33–48.

    Article  PubMed  CAS  Google Scholar 

  159. Graham, L.L., Beveridge, T.J., and Nanninga, N., Periplasmic Space and the Concept of the Periplasm, Trends Biochem. Sci., 1991, vol. 16, pp. 328–329.

    Article  PubMed  CAS  Google Scholar 

  160. Beveridge, T.J., The Periplasmic Space and the Periplasm in Gram-Positive and Gram-Negative Bacteria, Features, 1995, vol. 61, no. 3, pp. 125–130.

    Google Scholar 

  161. De Rosa, M. and Gambacorta, A., The Lipids of Archaebacteria, Prog. Lipid Res, 1988, vol. 27, pp. 153–175.

    Article  PubMed  Google Scholar 

  162. Gambacorta, A., Trincone, A., Nicolaus, B., Lama, L., and De Rosa, M., Unique Features of Archaea, Syst. Appl. Microbiol., 1994, no. 16, pp. 518–527.

  163. Batrakov, S.G., Pivovarova, T.A., Esipov, S.E., Sheichenko, V.I., and Karavaiko, G.I., D-Glucopyranosyl Caldarchaetidylglycerol Is the Main Lipid of the Acidophilic, Mesophilic, Ferrous Iron-Oxidizing Archaeon Ferroplasma acidiphilum, Biochim. Biophys. Acta, 2002, vol. 1581, pp. 29–35.

    PubMed  CAS  Google Scholar 

  164. Tsaplina, I.A., Osipov, G.A., Bogdanova, T.I., Nedorezova, T.P., and Karavaiko, G.I., Fatty Acid Composition of the Lipids of a Thermoacidophilic Bacterium of the Genus Sulfobacillus, Mikrobiologiya, 1994, vol. 63, no. 5, pp. 821–830.

    CAS  Google Scholar 

  165. Maklady, J.L., Vestling, M.M., Baumler, D., Boekelheide, N., Kaspar, C.W., and Banfield, J.F., Tetraether-Linked Membrane Monolayers in Ferroplasma spp.: a Key To Survival in Acid, Extremophiles, 2004, vol. 8, pp. 411–419.

    Article  CAS  Google Scholar 

  166. Wood, A.P., Aurikko, J.P., and Kelly, P.A., Challenge for 21st Century Molecular Biology and Biochemistry: What Are the Causes of Obligate Autotrophy and Methanotrophy, FEMS Microbiol. Rev., 2004, vol. 28, pp. 335–352.

    Article  PubMed  CAS  Google Scholar 

  167. Pronk, J.T., De Bruyn, J.C., Bos, P., and Kuenen, J.G., Anaerobic Growth of Thiobacillus ferrooxidans, Appl. Environ. Microbiol., 1992, vol. 58, pp. 2227–2230.

    PubMed  CAS  Google Scholar 

  168. Egorova, M.A., Carbon Metabolism of Sulfobacillus BActeria, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Moscow, 2004.

  169. Chain, P., Lamerding, G., Larimer, F., Regala, W., Lao, V., Land, M., and Hauser, L., et al., Complete Genome Sequence of the Ammonia-Oxidizing Bacterium and Obligate Chemolithoautotroph Nitrosomonas europaea, J. Bacteriol., 2003, vol. 185, pp. 2759–2773.

    Article  PubMed  CAS  Google Scholar 

  170. Amils, R., Irazabel, N., Moreira, D., Abad, J.P., and Marin, I., Genomic Organization of Acidophilic Chemolithotrophic Bacteria Using Pulsed Field Gel Electrophoretic Techniques, Biochemistry, 1998, vol. 80, pp. 911–921.

    Article  CAS  Google Scholar 

  171. Irazabel, N., Marin, I., and Amils, R., Genomic Organization of the Acidophilic Chemolithotrophic Bacterium Thiobacillus ferrooxidans ATCC 21834, J. Bacteriol., 1997, vol. 179, pp. 1946–1950.

    Google Scholar 

  172. Lysenko, A.M., Tsaplina, I.A., Golovacheva, R.S., Pivovarova, T.A., Vartanyan, N.S., and Karavaiko, G.I., Taxonomic Position of the Genus Sulfobacillus Determined by DNA Studies, Dokl. Akad. Nauk, 1987, vol. 294, no. 4, pp. 970–972.

    CAS  Google Scholar 

  173. Romanova, A.K., Chemoautotrophic Carbon Dioxide Assimilation in Khemosintez: K 100-letiyu otkrytiya S.N. Vinogradskim (Chemosynthesis: 100th Anniversary of S.N. Winogradsky Discovery), Moscow: Nauka, 1989, pp. 148–169.

    Google Scholar 

  174. Tsaplina, I.A., Krasil’nikova, E.N., Zakharchuk, L.M., Egorova, M.A., Bogdanova, T.I., and Karavaiko, G.I., Carbon Metabolism in Sulfobacillus thermosulfidooxidans subsp. asporogenes, Strain 41, Mikrobiologiya, 2000, vol. 69, no. 3, pp. 334–340 [Microbiology (Engl. Transl.), vol. 69, no. 3, pp. 270–276].

    CAS  Google Scholar 

  175. Zakharchuk, L.M., Egorova, M.A., Tsaplina, I.A., Bogdanova, T.I., Krasil’nikova, E.N., Melamud, V.S., and Karavaiko, G.I., Activity of the Enzymes of Carbon Metabolism in Sulfobacillus sibiricus under Various Conditions of Cultivation, Mikrobiologiya, 2003, vol. 72, no. 5, pp. 621–626 [Microbiology (Engl. Transl.), vol. 72, no. 5, pp. 553–557].

    CAS  Google Scholar 

  176. Egorova, M.A., Tsaplina, I.A., Zakharchuk, L.M., Bogdanova, T.I., and Krasil’nikova, E.N., Effect of Cultivation Conditions on the Growth and Activities of Sulfur Metabolism Enzymes and Carboxylases of Sulfobacillus thermosulfidooxidans subsp. asporogenes Strain 41, Prikl. Biokhim. Mikrobiol., 2004, vol. 40, no. 4, pp. 448–454 [Appl. Biochem. Microbiol. (Engl. Transl.), vol. 40, no. 4, pp. 381–387].

    PubMed  CAS  Google Scholar 

  177. Karavaiko, G.I., Krasil’nikova, E.N., Tsaplina, I.A., Bogdanova, T.I., and Zakharchuk, L.M., Growth and Carbohydrate Metabolism of Sulfobacilli, Mikrobiologiya, 2001, vol. 70, no. 3, pp. 293–299 [Microbiology (Engl. Transl.), vol. 70, no. 3, pp. 245–250].

    CAS  Google Scholar 

  178. Wood, A.P. and Kelly, D.P., Autotrophic and Mixotrophic Growth of Three Thermoacidophilic Iron-Oxidizing Bacteria, FEMS Microbiol. Lett., 1983, vol. 20, pp. 107–112.

    Article  CAS  Google Scholar 

  179. Kandler, O. and Stetter, K.O., Evidence for Autotrophic CO2 Assimilation in Sulfolobus brirleyi Via a Reductive Carboxylic Acid Pathway, Zentr.-bl. Bakteriol., Parasitenk., Infektionskrankh., Hyg. I Abt. Orig. C, 1981, vol. 2, pp. 111–121.

    CAS  Google Scholar 

  180. Rawlings, D.E., Characteristics and Adaptability of Iron-and Sulfur-Oxidizing Microorganisms Used for the Recovery of Metals from Minerals and Their Concentrates, Microbial Cell Factories, 2005, vol. 4, p. 13.

    Article  PubMed  CAS  Google Scholar 

  181. Varzabal, A., Brasseur, G., Ratouchniak, J., Lund, K., Lemesle-Meunier, D., De Moss, J.A., and Bonefoy, V., The High-Molecular-Weight Cytochrome c Cyc2 of Acidithiobacillus ferrooxidans Is An Outer Membrane Protein, J. Bacteriol., 2002, vol. 184, pp. 313–317.

    Article  Google Scholar 

  182. Sugio, T., Hirose, T., and LJ-Zhen, Y.E., Purification and Some Properties of Sulfite: Ferric Ion Oxidoreductase from Thiobacillus ferrooxidans, J. Bacteriol., 1992, vol. 174, pp. 4189–4192.

    PubMed  CAS  Google Scholar 

  183. Munsch, R. and Sand, W., Acid-Stable Cytochromes in Ferrous Ion Oxidizing Cell-Free Preparations from Thiobacillus ferrooxidans, FEMS Microbiol. Lett., 1992, vol. 92, pp. 83–88.

    Article  Google Scholar 

  184. Sugio, T., White, K.J., Shute, E., Choate, D., and Blake, R.C., Existence of a Hydrogen Sulfide: Ferric Ion Oxidoreductase in Iron-Oxidizing Bacteria, Appl. Environ. Microbiol., 1992, vol. 58, pp. 431–433.

    PubMed  CAS  Google Scholar 

  185. Blake, R.C. and Shute, E.A., Respiratory Enzymes of Thiobacillus ferrooxidans: Kinetic Properties of An Acidstable Iron: Rusticyanin Oxidoreductase, Biochemistry, 1994, vol. 33, pp. 9220–9228.

    Article  PubMed  CAS  Google Scholar 

  186. Blake, IIR.C. and Shute, E.A., Purification and Characterization of a Novel Cytochrome from Leptospirillum ferrooxidans, Int. Biohydrom. Symp. IBS. Biomine, 97, Glenside, SA, Australia, 1997.

    Google Scholar 

  187. Schäfer, G., Engelgard, and Müller, V., Bioenergeties of the Archaea, Microbiol. Mol. Biol. Rev., 1999, vol. 63, pp. 570–620.

    PubMed  Google Scholar 

  188. Gomes, C.M., Bandeiras, T.M., Teixeira, M., A New Type-II NADH Dehydrogenases from the Archaeon Acidianus ambivalents: Characterization and in Vitro Reconstruction of the Respiratory Chain, J. Bioenerg. Biomembr., 2001, vol. 33, pp. 1–8.

    Article  PubMed  CAS  Google Scholar 

  189. Gomes, C.M., Limos, R.S., Teixeira, M., Ketzin, A., Huber, H., Stetter, K.O., Schafer, G., and Anemuller, S., The Unusual Non Sulfur Composition of the Acidianus ambivalens Succinate Dehydrogenase Complex, Biophys. Biochim. Acta, 1999, vol. 1411, pp. 134–141.

    Article  CAS  Google Scholar 

  190. Lemos, R.S., Gomes, C.M., and Teixeira, M., Acidianus ambivalens Complex II Typifies a Novel Family of Succinate Dehydrogenases, Biochem. Biophys. Res. Commun., 2001, vol. 281, pp. 141–150.

    Article  PubMed  CAS  Google Scholar 

  191. Giuffre, A., Gomes, C.M., Antonini, G., D’Itrice, Teixeira, M., and Brunori, M., Functional Properties of the Quinol Oxidase from Acidianus ambivalens and the Possible Role of Its Electron Donor: Studies in the Membrane Integrated and Purified Enzyme, Eur. J. Biochem., 1997, vol. 250, pp. 383–388.

    Article  PubMed  CAS  Google Scholar 

  192. Purschke, W.C., Schmidt, C.L., Petersen, A., Anemuller, S., and Schafer, G., The Terminal Quinol Oxidase of the Hyperthermophilic Archaeon Exhibits Unusual Submit Structure and Gene Organization, J. Bacteriol., 1997, vol. 179, pp. 1344–1353.

    PubMed  CAS  Google Scholar 

  193. Lubben, M., Kolmerer, B., and Saraste, M., An Archaebacterial Terminal Oxidase Combines Core Structures of Two Mitochondrial Respiratory Complexes, EMBO J., 1992, vol. 11, pp. 805–812.

    PubMed  CAS  Google Scholar 

  194. Castresana, J., Lubben, M., and Saraste, M., New Archaebacteria Genes Coding for Redox Proteins: Implication for the Evolution of Aerobic Metabolism, J. Mol. Biol., 1995, vol. 250, pp. 202–210.

    Article  PubMed  CAS  Google Scholar 

  195. Lubben, M., Arnaud, S., Casfresana, J., Warne, A., Albracht, S.P.J., and Saraste, M., A Second Terminal Oxidase in Sulfolobus acidocaldarius, Eur. J. Biochem., 1994, vol. 224, pp. 151–159.

    Article  PubMed  CAS  Google Scholar 

  196. Bandeiras, T.M., Salgueiro, C.A., Huber, H., Gomez, C.M., and Teixeira, M., The Respiratory Chain of the Thermophilic Archaeon Sulfolobus metallicus: Studies on the Type-II NADH Dehydrogenase, Biochim. Biophys. Acta, 2003, vol. 1557, pp. 13–19.

    Article  PubMed  CAS  Google Scholar 

  197. Gomes, C.M., Huber, H., Stetter, K.O., and Teixeira, M., Evidence for a Novel Type of Iron Cluster in the Respiratory Chain of the Archaeon Sulfolobus metallicus, FEBS Lett., 1999, vol. 432, pp. 99–102.

    Article  Google Scholar 

  198. She, Q., Singh, R.K., Confaloniery, F., et al., The Complete Genome of the Crenarchaeon Sulfolobus solfataricus P2, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, pp. 7835–7840.

    Article  PubMed  CAS  Google Scholar 

  199. De Rosa, M., De Rosa, A., Gambacorta, A., Minale, L., Thomson, R.H., and Worthington, R.D., Caldariellaquinone, a Unique Benzo-B-Thiophen-4,7-Quinone from Caldariella acidophila, An Extremely Thermophilic and Acidophilic Bacterium, J. Chem. Soc., Perkin Trans., 1977, vol. 1, pp. 653–657.

    Article  Google Scholar 

  200. Collins, M.D. and Langworthy, T.A., Respiratory Quinine Composition of Some Acidophilic Bacteria, Syst. Appl. Microbiol, 1983, vol. 4, pp. 295–304.

    CAS  Google Scholar 

  201. Thurl, S., Witke, W., and Buhrow, I., Schafer G Quinones from Archaebacteria. II. Different Types of Quinones from Sulphur-Dependent Archaebacteria, Biol. Chem. Hoppe-Seyler, 1986, vol. 367, pp. 191–197.

    PubMed  CAS  Google Scholar 

  202. Lanzotti, V., Trincone, A., Gambacorta, A., De Rosa, M., and Breitmaier, E., 2H and 13C NMR Assignment of Benzothiophenquinones from the Sulfur-Oxidizing Archaebacterium Sulfolobus solfataricus, Eur. J. Biochem., 1986, vol. 160, pp. 37–40.

    Article  PubMed  CAS  Google Scholar 

  203. Nicolaus, B., Trincone, A., Lama, L., Palmieri, G., and Gambacorta, A., Quinone Composition in Sulfolobus acidocaldarius Grown in Different Conditions, Syst. Appl. Microbiol., 1992, vol. 15, pp. 18–20.

    CAS  Google Scholar 

  204. Kerscher, J., Novitzki, S., and Oesterheit, D., Thermoacidophilic Archaebacteria Contain Bacterial-Type Ferredoxins Acting As Electron Acceptors of 2-Oxoacid: Ferredoxin Oxidoreductases, Eur. J. Biochem., 1982, vol. 128, pp. 223–230.

    Article  PubMed  CAS  Google Scholar 

  205. Teixeira, M., Batista, R., Campos, A.P., Gomes, C., Mendes, J., Pacheco, I., Anemuller, S., and Hagen, R., A Seven-Iron Ferredoxin from the Thermoacidophilic Archaeon Desulfurococcus ambivalens, Eur. J. Biochem., 1995, vol. 227, pp. 322–327.

    Article  PubMed  CAS  Google Scholar 

  206. Gomes, C.M., Faria, A., Carita, J.C., Mendes, J., Regalla, M., Chicau, P., Huber, H., Stetter, K.O., and Teixeira, M., Di-Claster, Seven-Iron Ferredoxins from Hyperthermophilic Sulfolobales, J. Biol. Inorg. Chem., 1998, vol. 3, pp. 499–507.

    Article  CAS  Google Scholar 

  207. Anemuller, S., Lubben, M., and Schafer, G., The Respiratory System of Sulfolobus acidocaldarius, a Thermoacidophilic Archaebacterium, FEBS Lett., 1985, vol. 193, pp. 83–87.

    Article  Google Scholar 

  208. Anemuller, S. and Schafer, G., Cytochrome aa 3 from the Thermoacidophilic Archaebacterium Sulfolobus acidocaldarius, FEBS Lett., 1989, vol. 244, pp. 451–455.

    Article  Google Scholar 

  209. Kawarabayasi, Y., Hino, Y., Horikawa, H., et al., Complete Genome Sequence of An Aerobic Thermoacidophilic Crenarchaeon Sulfolobus tokodaii Strain 7, DNA Res., 2001, vol. 8, pp. 123–140.

    Article  PubMed  CAS  Google Scholar 

  210. Tyson, G.W., Chapman, J., Hugenholt, Z.P., Allen, E.E., Ram, R.J., Richardson, P.M., Solovyev, V.V., Rubin, E.M., Rokhsar, D.S., and Banfield, J.F., Community Structure and Metabolism Through Reconstruction of Microbial Genomes from the Environment, Nature, 2004, no. 428, pp. 37–43.

  211. Komorowski, L., Verheyen, W., and Schafer, G., The Archaeal Respiratory Supercomplex SoxM from S. acidocaldarius, Combines Features of Quinole and Cytochrome c Oxidases, Biol. Chem., 2002, vol. 383, pp. 1791–1799.

    Article  PubMed  CAS  Google Scholar 

  212. Dopson, M., Baker-Austin, C., and Bond, P.L., Analysis of Differential Protein Expression During Growth States of Ferroplasma Strains and Insights Into Electron Transport for Iron Oxidation, Microbiology (UK), 2005, vol. 151, pp. 4127–4137.

    Article  PubMed  CAS  Google Scholar 

  213. Tikhonova, G.V., Lisenkova, L.A., Doman, N.G., and Skulachev, V.P., Patways of Electron Transport in Iron-Oxidizing Bacteria Thiobacillus ferrooxidans, Biokhimiya, 1967, vol. 32, no. 4, p. 725.

    CAS  Google Scholar 

  214. Kletzin, A., Coupled Enzymatic Production of Sulfite, Thiosulfate, and Hydrogen Sulfide from Sulfur: Purification and Properties of a Sulfur Oxigenase Reductase from the Facultatively Anaerobic Archaebacterium Desulfurolobus ambivalens, J. Bacteriol., 1989, vol. 171, pp. 1638–1643.

    PubMed  CAS  Google Scholar 

  215. Muller, F., Bandeiras, T., Urich, T., Teixeira, M., Gomes, C.M., and Kletzin, A., Coupling of the Pathway of Sulphur Oxidation To Dioxygen Reduction: Characterization of a Novel Membrane-Bound Thiosulphate, Quinine Oxidoreductase, Nucleic Acid Res., 2004, vol. 53, pp. 1147–1160.

    Google Scholar 

  216. Zimmermann, P., Laska, S., and Kletzin, A., Two Modes of Sulfite Oxidation in the Extremely Thermophilic and Acidophilic Archaeon Acidianus ambivalens, Arch. Microbiol., 1999, vol. 172, pp. 76–82.

    Article  PubMed  CAS  Google Scholar 

  217. Pimenov, N.V., Microbial Processes in Unloading Zones of Gas-Containing Fluids at the Ocean Bottom, Collected Articles on the Institute 70th Annivesary, M., Nauka, 2004, pp. 337–360 (in Russian).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. I. Karavaiko.

Additional information

Original Russian Text © G.I. Karavaiko, G.A. Dubinina, T.F. Kondrat’eva, 2006, published in Mikrobiologiya, 2006, Vol. 75, No. 5, pp. 593–629.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karavaiko, G.I., Dubinina, G.A. & Kondrat’eva, T.F. Lithotrophic microorganisms of the oxidative cycles of sulfur and iron. Microbiology 75, 512–545 (2006). https://doi.org/10.1134/S002626170605002X

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002626170605002X

Key words

Navigation