Skip to main content
Log in

ELECTRONIC STRUCTURE AND MAGNETIC PROPERTIES OF THE ISOMERS OF BIS-PHENALENYL STILBENE DERIVATIVES: A QUANTUM CHEMICAL STUDY

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

It is shown by quantum chemical simulations (DFT M05-2X/B3LYP+D3BJ/6-311++G(d,p)) that systems formed by the annulation of stilbene by radical phenalenyl groups exhibit significant variations of their structural parameters and magnetic properties. Depending on the attachment site of polycyclic fragments, three compounds having from nine to twelve isomers can be formed. The analysis of magnetic properties revealed a derivative exhibiting characteristics of a magnetic switch. Ferromagnetic interactions predicted for the isomers of another compound suggest it to be a triplet biradical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

REFERENCES

  1. F. Troiani and M. Affronte. Molecular spins for quantum information technologies. Chem. Soc. Rev., 2011, 40(6), 3119. https://doi.org/10.1039/c0cs00158a

    Article  CAS  PubMed  Google Scholar 

  2. K. Sato, S. Nakazawa, R. Rahimi, T. Ise, S. Nishida, T. Yoshino, N. Mori, K. Toyota, D. Shiomi, Y. Yakiyama, Y. Morita, M. Kitagawa, K. Nakasuji, M. Nakahara, H. Hara, P. Carl, P. Höfer, and T. Takui. Molecular electron-spin quantum computers and quantum information processing: pulse-based electron magnetic resonance spin technology applied to matter spin-qubits. J. Mater. Chem., 2009, 19(22), 3739. https://doi.org/10.1039/b819556k

    Article  CAS  Google Scholar 

  3. I. Ratera and J. Veciana. Playing with organic radicals as building blocks for functional molecular materials. Chem. Soc. Rev., 2012, 41(1), 303-349. https://doi.org/10.1039/c1cs15165g

    Article  CAS  PubMed  Google Scholar 

  4. O. Sato. Dynamic molecular crystals with switchable physical properties. Nat. Chem., 2016, 8(7), 644-656. https://doi.org/10.1038/nchem.2547

    Article  CAS  Google Scholar 

  5. E. Moreno-Pineda, C. Godfrin, F. Balestro, W. Wernsdorfer, and M. Ruben. Molecular spin qudits for quantum algorithms. Chem. Soc. Rev., 2018, 47(2), 501-513. https://doi.org/10.1039/c5cs00933b

    Article  CAS  PubMed  Google Scholar 

  6. J. Lehmann, A. Gaita-Ariño, E. Coronado, and D. Loss. Quantum computing with molecular spin systems. J. Mater. Chem., 2009, 19(12), 1672-1677. https://doi.org/10.1039/b810634g

    Article  CAS  Google Scholar 

  7. K. Matsuda and M. Irie. A diarylethene with two nitronyl nitroxides: photoswitching of intramolecular magnetic interaction. J. Am. Chem. Soc., 2000, 122(30), 7195-7201. https://doi.org/10.1021/ja000605v

    Article  CAS  Google Scholar 

  8. K. Matsuda and M. Irie. Photoswitching of intramolecular magnetic interaction: a diarylethene photochromic spin coupler. Chem. Lett., 2000, 29(1), 16/17. https://doi.org/10.1246/cl.2000.16

    Article  Google Scholar 

  9. K. Matsuda and M. Irie. Photochromism of diarylethenes with two nitronyl nitroxides: photoswitching of an intramolecular magnetic interaction. Chem. – Eur. J., 2001, 7(16), 3466. https://doi.org/10.1002/1521-3765(20010817)7:16<3466::aid-chem3466>3.0.co;2-x

    Article  CAS  PubMed  Google Scholar 

  10. K. Matsuda, M. Matsuo, and M. Irie. Photoswitching of intramolecular magnetic interaction using photochromic diarylethene spin coupler: introduction of thiophene spacer. Chem. Lett., 2001, 30(5), 436/437. https://doi.org/10.1246/cl.2001.436

    Article  Google Scholar 

  11. K. Matsuda, M. Irie. Effective photoswitching of intramolecular magnetic interaction by diarylethene: backgrounds and applications. Polyhedron, 2005, 24(16/17), 2477-2483. https://doi.org/10.1016/j.poly.2005.03.050

    Article  CAS  Google Scholar 

  12. S. Nishizawa, J. Hasegawa, and K. Matsuda. Computational investigation into photoswitching efficiency of diarylethene derivatives: an insight based on the decay constant of electron tunneling. J. Phys. Chem. C, 2015, 119(34), 20169-20178. https://doi.org/10.1021/acs.jpcc.5b06738

    Article  CAS  Google Scholar 

  13. J. Huang, Y. Wang, L. Xu, Y. Liu, G. Zhou, J. Li, and Z. Li. Theoretical insights into the effect of heterocycles of the molecular framework on photochromic magnetic properties of diarylethene compounds. J. Phys. Org. Chem., 2019, 32(9). https://doi.org/10.1002/poc.3973

    Article  Google Scholar 

  14. A. G. Starikov, M. G. Chegerev, A. A. Starikova, and V. I. Minkin. Computational search for radical-bearing stilbene derivatives with switchable magnetic properties. Russ. Chem. Bull., 2022, 71(7), 1369-1377. https://doi.org/10.1007/s11172-022-3542-y

    Article  CAS  Google Scholar 

  15. Z. Mou, Y.-H. Tian, and M. Kertesz. Validation of density functionals for pancake-bonded -dimers; dispersion is not enough. Phys. Chem. Chem. Phys., 2017, 19(36), 24761-24768. https://doi.org/10.1039/c7cp04637e

    Article  CAS  PubMed  Google Scholar 

  16. Z. Mou and M. Kertesz. Pancake Bond Orders of a Series of -Stacked Triangulene Radicals. Angew. Chem., Int. Ed., 2017, 56(34), 10188-10191. https://doi.org/10.1002/anie.201704941

    Article  CAS  Google Scholar 

  17. Z. Mou, T. Kubo, and M. Kertesz. Hetero--dimers of phenalenyls. Chem. – Eur. J., 2015, 21(50), 18230-18236. https://doi.org/10.1002/chem.201503409

    Article  CAS  PubMed  Google Scholar 

  18. P. Beaujean and M. Kertesz. Helical molecular redox actuators with pancake bonds? Theor. Chem. Acc., 2015, 134(12), 147. https://doi.org/10.1007/s00214-015-1750-3

    Article  CAS  Google Scholar 

  19. S. K. Pal, M. E. Itkis, F. S. Tham, R. W. Reed, R. T. Oakley, and R. C. Haddon. Trisphenalenyl-based neutral radical molecular conductor. J. Am. Chem. Soc., 2008, 130(12), 3942-3951. https://doi.org/10.1021/ja077771o

    Article  CAS  PubMed  Google Scholar 

  20. S. K. Pal, M. E. Itkis, F. S. Tham, R. W. Reed, R. T. Oakley, and R. C. Haddon. Resonating valence-bond ground state in a phenalenyl-based neutral radical conductor. Science, 2005, 309(5732), 281-284. https://doi.org/10.1126/science.1112446

    Article  CAS  PubMed  Google Scholar 

  21. R. G. Hicks. A new spin on bistability. Nat. Chem., 2011, 3(3), 189-191. https://doi.org/10.1038/nchem.997

    Article  CAS  Google Scholar 

  22. M. E. Itkis, X. Chi, A. W. Cordes, and R. C. Haddon. Magneto-opto-electronic bistability in a phenalenyl-based neutral radical. Science, 2002, 296(5572), 1443-1445. https://doi.org/10.1126/science.1071372

    Article  CAS  PubMed  Google Scholar 

  23. Y. Morita, S. Nishida, T. Murata, M. Moriguchi, A. Ueda, M. Satoh, K. Arifuku, K. Sato, and T. Takui. Organic tailored batteries materials using stable open-shell molecules with degenerate frontier orbitals. Nat. Mater., 2011, 10(12), 947-951. https://doi.org/10.1038/nmat3142

    Article  CAS  Google Scholar 

  24. P. Ravat, T. Šolomek, M. Rickhaus, D. Häussinger, M. Neuburger, M. Baumgarten, and M. Juríček. Cethrene: a helically chiral biradicaloid isomer of heptazethrene. Angew. Chem., Int. Ed., 2016, 55(3), 1183-1186. https://doi.org/10.1002/anie.201507961

    Article  CAS  Google Scholar 

  25. P. Ravat, T. Šolomek, D. Häussinger, O. Blacque, and M. Juríček. Dimethylcethrene: a chiroptical diradicaloid photoswitch. J. Am. Chem. Soc., 2018, 140(34), 10839-10847. https://doi.org/10.1021/jacs.8b05465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. T. Šolomek, P. Ravat, Z. Mou, M. Kertesz, and M. Juríček. Cethrene: The chameleon of Woodward-Hoffmann rules. J. Org. Chem., 2018, 83(8), 4769-4774. https://doi.org/10.1021/acs.joc.8b00656

    Article  CAS  PubMed  Google Scholar 

  27. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox. Gaussian16: Revision A.03. Wallingford, CT: Gaussian, Inc., 2016.

  28. W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation effects. Phys. Rev., 1965, 140(4A), A1133-A1138. https://doi.org/10.1103/physrev.140.a1133

    Article  Google Scholar 

  29. Y. Zhao, N. E. Schultz, and D. G. Truhlar. Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J. Chem. Theory Comput., 2006, 2(2), 364-382. https://doi.org/10.1021/ct0502763

    Article  CAS  PubMed  Google Scholar 

  30. A. D. Becke. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 1993, 98(7), 5648-5652. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  31. S. Grimme, S. Ehrlich, and L. Goerigk. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem., 2011, 32(7), 1456-1465. https://doi.org/10.1002/jcc.21759

    Article  CAS  PubMed  Google Scholar 

  32. L. Goerigkand and S. Grimme. A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. Phys. Chem. Chem. Phys., 2011, 13(14), 6670. https://doi.org/10.1039/c0cp02984j

    Article  CAS  PubMed  Google Scholar 

  33. A. A. Starikova, E. A. Metelitsa, and A. G. Starikov. Electronic structure and magnetic properties of o-benzoquinone iron complexes with tetraazamacrocyclic ligands. J. Struct. Chem., 2019, 60(8), 1219-1225. https://doi.org/10.1134/s002247661908002x

    Article  CAS  Google Scholar 

  34. A. A. Starikova, M. G. Chegerev, and A. G. Starikov. Computational modeling of structure and magnetic properties of dinuclear di-o-benzoquinone iron complexes with linear polycyclic linkers. Russ. Chem. Bull., 2020, 69(2), 203-211. https://doi.org/10.1007/s11172-020-2747-1

    Article  CAS  Google Scholar 

  35. V. I. Minkin, A. A. Starikova, M. G. Chegerev, and A. G. Starikov. Quantum-chemical study of cobalt complexes with o-quinones modified with silicon triangulene derivatives. Dokl. Chem., 2020, 494(2), 149-154. https://doi.org/10.1134/s001250082010002x

    Article  CAS  Google Scholar 

  36. A. A. Starikova, M. G. Chegerev, A. G. Starikov, and V. I. Minkin. o-Benzoquinone cobalt complexes bearing organosilicon radicals: quantum-chemical study. Russ. J. Coord. Chem., 2022, 48(4), 233-241. https://doi.org/10.1134/s1070328422040054

    Article  CAS  Google Scholar 

  37. V. I. Minkin, A. G. Starikov, A. A. Starikova, O. A. Gapurenko, R. M. Minyaev, and A. I. Boldyrev. Electronic structure and magnetic properties of the triangular nanographenes with radical substituents: a DFT study. Phys. Chem. Chem. Phys., 2020, 22(3), 1288-1298. https://doi.org/10.1039/c9cp05922a

    Article  CAS  PubMed  Google Scholar 

  38. A. A. Starikova, A. G. Starikov, R. M. Minyaev, A. I. Boldyrev, and V. I. Minkin. Magnetic properties of acenes and their o-quinone derivatives: computer simulation. Dokl. Chem., 2018, 478(2), 21-25. https://doi.org/10.1134/s0012500818020015

    Article  CAS  Google Scholar 

  39. V. I. Minkin, A. G. Starikov, and A. A. Starikova. Acene-linked zethrenes and bisphenalenyls: a DFT search for organic tetraradicals. J. Phys. Chem. A, 2021, 125(30), 6562-6570. https://doi.org/10.1021/acs.jpca.1c02794

    Article  CAS  PubMed  Google Scholar 

  40. V. I. Minkin, E. P. Ivakhnenko, P. A. Knyazev, A. G. Starikov, O. P. Demidov, N. V. Tkachenko, and A. I. Boldyrev. Electronic isomerism (electromerism) of 6,8-di-tert-butyl-3H-phenoxazin-3-one oxime radical. Russ. Chem. Bull., 2022, 71(1), 30-37. https://doi.org/10.1007/s11172-022-3372-y

    Article  CAS  Google Scholar 

  41. L. Noodleman. Valence bond description of antiferromagnetic coupling in transition metal dimers. J. Chem. Phys., 1981, 74(10), 5737-5743. https://doi.org/10.1063/1.440939

    Article  CAS  Google Scholar 

  42. M. Shoji, K. Koizumi, Y. Kitagawa, T. Kawakami, S. Yamanaka, M. Okumura, and K. Yamaguchi. A general algorithm for calculation of Heisenberg exchange integrals J in multispin systems. Chem. Phys. Lett., 2006, 432(1-3), 343-347. https://doi.org/10.1016/j.cplett.2006.10.023

    Article  CAS  Google Scholar 

  43. Chemcraft: version 1.7. 2013, http://www.chemcraftprog.com.

  44. M. Head-Gordon. Characterizing unpaired electrons from the one-particle density matrix. Chem. Phys. Lett., 2003, 372(3/4), 508-511. https://doi.org/10.1016/s0009-2614(03)00422-6

    Article  CAS  Google Scholar 

  45. V. N. Staroverov and E. R. Davidson. Distribution of effectively unpaired electrons. Chem. Phys. Lett., 2000, 330(1/2), 161-168. https://doi.org/10.1016/s0009-2614(00)01088-5

    Article  CAS  Google Scholar 

  46. M. Baumgarten and S. Karabunarliev. Reverting the effect of magnetic couplers in bridged di- and polyradicals. Chem. Phys., 1999, 244(1), 35-47. https://doi.org/10.1016/s0301-0104(99)00090-7

    Article  CAS  Google Scholar 

  47. K. C. Ko, Y. G. Park, D. Cho, and J. Y. Lee. Simple but useful scheme toward understanding of intramolecular magnetic interactions: benzene-bridged oxoverdazyl diradicals. J. Phys. Chem. A, 2014, 118(40), 9596-9606. https://doi.org/10.1021/jp5072007

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The study was funded by the Russian Science Foundation (project No. 22-23-01006, https://rscf.ru/project/22-23-01006/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Starikov.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 1, 104314.https://doi.org/10.26902/JSC_id104314

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Starikov, A.G., Chegerev, M.G. & Starikova, A.A. ELECTRONIC STRUCTURE AND MAGNETIC PROPERTIES OF THE ISOMERS OF BIS-PHENALENYL STILBENE DERIVATIVES: A QUANTUM CHEMICAL STUDY. J Struct Chem 64, 58–68 (2023). https://doi.org/10.1134/S0022476623010031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623010031

Keywords

Navigation