Skip to main content
Log in

Theoretical study of the electronic conduction through organic nanowires

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

A substantial amount of researches have been carried out on the electron transport properties of gold surfaces. In order to study the role of linkage in the conductive properties of a molecular wire, different linkers such as sulfur, nitrogen, oxygen, CS, SH, NS, and CN are considered in our study. It is found that nitrogen or sulfur linkages can bond Au covalently to cis- and trans-butadiene, whereas on the other hand, oxygen linkage with the same shows a weak interaction and a non-covalent character. Further, this research is also an attempt to study the dependence of the molecular electronic structure of gold-molecule complexes on the external electric field. In addition, electronic conduction has been investigated from the perspective of alteration in shape of molecular orbitals and the development of the HOMO-LUMO gap of moleculegold complexes under the effect of an electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Aviram and M. A. Ratner, Chem. Phys. Lett., 29, 277–283 (1974).

    Article  CAS  Google Scholar 

  2. C. Joachim, J. K. Gimzewski, R. R. Schlittler, et al. Phys. Rev. Lett., 74, 2102–2015 (1995).

    Article  CAS  Google Scholar 

  3. T. Oyamada, H. Tanaka, H. Sasabe, et al. Appl. Phys. Lett., 83, 1252–1254 (2003).

    Article  CAS  Google Scholar 

  4. L. Ma, S. Pyo, J. Ouyang, et al. Appl. Phys. Lett., 82, 1419–1421 (2003).

    Article  CAS  Google Scholar 

  5. D. R. Stewart, D. A. Ohlberg, P. Beck A., et al. Nano Lett., 4, 133–136 (2004).

    Article  CAS  Google Scholar 

  6. J. He, L. Ma, J. Wu, and Y. Yang, J. Appl. Phys., 97, 064507 (2005).

    Article  Google Scholar 

  7. C. N. Lau, D. R. Stewart, R. S. Williams, et al. Nano Lett., 4, 569–572 (2004).

    Article  CAS  Google Scholar 

  8. L. T. Cai, Y. X. Yao, J. P. Yang, et al. J. Mol. Tour. Chem. Matter., 14, 2905–2909 (2002).

    Article  CAS  Google Scholar 

  9. D. L. Allara, T. D. Dunbar, P. S. Weiss, L. A. Bumm, et al. Ann. Acad. Sci., 852, 349–370 (1998).

    Article  CAS  Google Scholar 

  10. J. M. Tour, Chem. Rev., 96, 537–553 (1996).

    Article  CAS  Google Scholar 

  11. Y. C. Choi, W. Y. Kim, K. S. Park, et al. J. Chem. Phys., 122, 094706 (2005).

    Article  Google Scholar 

  12. P. Hermet, J. L. Bantignies, A. Rahmani, et al. J. Phys. Chem. A, 109, 4202–4207 (2005).

    Article  CAS  Google Scholar 

  13. Y. Zhang, Y. Ye, Y. Li, et al. J. Mol. Struct. (Theochem.), 802, 53–58 (2007).

    Article  CAS  Google Scholar 

  14. Y. Li, J. Zhao, and G. Yin, Comp. Mater. Sci., 39, 775–781 (2006).

    Article  Google Scholar 

  15. Z. Bayat, S. Daneshnia, and S. J. Mahdizadeh, Physica E, 43, 1569–1575 (2011).

    Article  CAS  Google Scholar 

  16. A. Mohajeri and A. Zare, Comp. Mater.Sci., 45, 935–940 (2009).

    Article  CAS  Google Scholar 

  17. S. Sitha and A. Bhanuprakash, J. Mol. Struct. (Theochem.), 761, 31–38 (2006).

    Article  CAS  Google Scholar 

  18. W. B. Davis, W. A. Svec, M. A. Ratner, et al. Nature, 396, 60–63 (1998).

    Article  CAS  Google Scholar 

  19. W. B. Davis, M. A. Ratner, and M. R. Wasielewski, J. Am. Chem. Soc., 123, 7877–7886 (2001).

    Article  CAS  Google Scholar 

  20. W. Gao, M. Zhao, and Q. Jiang, Appl. Surface Sci., 255, 9259–9263 (2009).

    Article  CAS  Google Scholar 

  21. H. Ke, H. U. Baranger, and W. Yang, J. Am. Chem. Soc., 126, 15897–15904 (2004).

    Article  CAS  Google Scholar 

  22. L. Yang, J. KangFeng, A. MinRen, et al. Polymer, 47, 1397–1404 (2006).

    Article  CAS  Google Scholar 

  23. J. Chen, W. Wang, M. A. Reed, et al. Appl. Phys. Lett., 77, 1224–1226 (2000).

    Article  CAS  Google Scholar 

  24. R. J. Magyar, S. Tretiak, Y. Gao, et al. Chem. Phys. Lett., 401, 149–156 (2005).

    Article  CAS  Google Scholar 

  25. Y. Li, J. Zhao, X. Yin, et al. Phys Chem. Chem. Phys., 9, 1186–1193 (2006).

    Article  Google Scholar 

  26. U. Bunz, Chem. Rev., 100, 1605–1644 (2000).

    Article  CAS  Google Scholar 

  27. M. Moroni, J. Le Moigne, and S. Luzzati, Macromol., 27, 562–571 (1994).

    Article  CAS  Google Scholar 

  28. Y. Li, J. Zhao, X. Yin, et al. Phys Chem. Chem. Phys., 9, 1186–1193 (2006).

    Article  Google Scholar 

  29. W. R. Wadt and P. J. Hay, J. Chem. Phys., 82, 284–298 (1985).

    Article  CAS  Google Scholar 

  30. Y. Li, G. Yin, J. Yao, and J. Zhao, Comput. Mater. Sci., 42, 638–642 (2008).

    Article  CAS  Google Scholar 

  31. Y. Li, J. Zhao, and G. Yin, Comp. Mater. Sci, 39, 775–781 (2006).

    Article  Google Scholar 

  32. X. D. Cui, A. Primak, X. Zarate, et al., Science, 294, 571–574 (2001).

    Article  CAS  Google Scholar 

  33. J. Zhao and K. Uosaki, Nano Lett., 2, 137–140 (2002).

    Article  CAS  Google Scholar 

  34. M. J. Frisch et al., GAUSSIAN, Gaussian Inc, Wallingford, CT (2004).

    Google Scholar 

  35. P. Delaney, M. Nolan, and J. C. Greer, J. Chem. Phys., 122, 044710-2 (2005).

    Article  Google Scholar 

  36. J. M. Seminario, A. G. Zacarias, and J. M. Tour, J. Am. Chem. Soc., 122, 3015–3020 (2003).

    Article  Google Scholar 

  37. C. Majumder, T. M. Briere, H. Mizuseki, et al. J. Chem. Phys., 117, 7669–7675 (2002).

    Article  CAS  Google Scholar 

  38. H. Fueno, M. Hayashi, K. Nin, et al. Curr. Appl. Phys., 6, 939–942 (2006).

    Article  Google Scholar 

  39. J. G. Kushmerick, D. B. Holt, S. K. Pollack, et al. J. Am. Chem. Soc., 124, 10654/10655 (2002).

    Article  Google Scholar 

  40. K. W. Hipps, Science, 294, 536/537 (2001).

    Article  Google Scholar 

  41. J. M. Beebe, V. B. Engelkes, L. L. Miller, et al. J. Am. Chem. Soc., 124, 11268/11269 (2002).

    Article  Google Scholar 

  42. Y. Xue, S. Datta, S. Hongy, et al. Phys. Rev. B, 59, R7852 (1999).

    Article  CAS  Google Scholar 

  43. C. Majumder, T. M. Briere, H. Mizuseki, et al. J. Chem. Phys., 117, 7669–7675 (2002).

    Article  CAS  Google Scholar 

  44. H. Fueno, M. Hayashi, K. Nin, et al. Curr. Appl. Phys., 6, 939–942 (2006).

    Article  Google Scholar 

  45. Y. Ye, M. Zhang, and J. Zhao, J. Mol. Struct. (Theochem.), 822, 12–20 (2007).

    Article  CAS  Google Scholar 

  46. Y. Li, J. Zhao, X. Yin, et al. J. Phys. Chem. A, 110, 11130–11135 (2006).

    Article  CAS  Google Scholar 

  47. W. Y. Kim, S. K. Kwon, and K. S. Kim, Phys. Rev. B, 76, 033415 (2007).

    Article  Google Scholar 

  48. A. Pecchia, A. DiCarlo, A. Gagliardi, et al. Nano Lett., 4, 2109–2114 (2004).

    Article  CAS  Google Scholar 

  49. W. Y. Kim, Y. C. Choi, and K. S. Kim, J. Mater. Chem., 18, 4510–4521 (2008).

    Article  CAS  Google Scholar 

  50. W. Y. Kim and K. S. Kim, J. Comput. Chem., 29, 1073–1083 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Chamani.

Additional information

Original Russian Text © 2014 Z. Chamani, Z. Bayat, S. J. Mahdizadeh.

The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 55, No. 3, pp. 557–565, May–June, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chamani, Z., Bayat, Z. & Mahdizadeh, S.J. Theoretical study of the electronic conduction through organic nanowires. J Struct Chem 55, 530–538 (2014). https://doi.org/10.1134/S0022476614030226

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476614030226

Keywords

Navigation