Skip to main content
Log in

Estimation and prediction of 13C NMR chemical shifts of carbon atoms in both alcohols and thiols

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Quantitative structure-spectrum relationship calculations of 13C NMR chemical shifts of both 302 carbon atoms in 56 alcohols and 62 carbon atoms in 15 thiols are described using several parameters: the atomic ionicity index (INI), the polarizability effect index (PEI), and stereoscopic effect parameters (ɛ) of the compounds. The 13C NMR chemical shifts for these compounds of both alcohols and thiols can be estimated through the multiple linear regression (MLR). A MLR model was built with variable screening by the stepwise multiple regression and examined by validation on its stability. The correlation coefficient of the established model as well as the leave-one-out cross-validation was 0.9724 and 0.9716 respectively. The results obviously indicate that INI and ɛ are linearly related with 13C NMR chemical shifts, which provides a new method for calculating 13C NMR chemical shifts in the compounds of both alcohols and thiols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Benzi, M. Cossi, V. Barone, R. Tarroni, and C. A. Zannoni, J. Phys. Chem. B, 109, 2584–2590 (2005).

    Article  CAS  Google Scholar 

  2. X. H. Liu, Y. R. Ren, P. Zhou, and Z. C. Shang, J. Mol. Struct., 995, Nos. 1–3, 163–172 (2011).

    Article  CAS  Google Scholar 

  3. H. Neuvonen and K. Neuvonen, J. Chem. Soc., Perkin Trans. 2, 1497–1502 (1999).

    Google Scholar 

  4. D. M. Grant and E. G. Paul, J. Am. Chem. Soc., 86, 2984–2990 (1964).

    Article  CAS  Google Scholar 

  5. L. P. Lindeman and J. Q. Adams, Anal. Chem., 43, No. 10, 1245–1252 (1971).

    Article  CAS  Google Scholar 

  6. D. L. Clouser and P. C. Jurs, J. Chem. Inf. Comput. Sci., 36, 168–172 (1996).

    Article  CAS  Google Scholar 

  7. O. Ivanciuc, J. P. Rabine, and D. Cabrol-Bass, Comput. Chem., 21, No. 6, 437–443 (1997).

    Article  CAS  Google Scholar 

  8. O. Ivanciuc, J. P. Rabine, D. Cabrol-Bass, A. Panaye, and J. P. Doucet, J. Chem. Inf. Comput. Sci., 37, 587–598 (1997).

    Article  CAS  Google Scholar 

  9. M. Nohair and D. Zakarya, J. Chem. Inf. Comput. Sci., 42, 586–591 (2002).

    Article  CAS  Google Scholar 

  10. Z. Z. Meng and W. R. Carper, J. Mol. Struct. (Theochem), 588, 45–53 (2002).

    Article  CAS  Google Scholar 

  11. O. Crescenzi, G. Correale, A. Bolognese, V. Piscopo, M. Parrilli, and V. Barone, Org. Biomol. Chem., 2, 1577–1581 (2004).

    Article  CAS  Google Scholar 

  12. G. Y. Sun, Chem. Phys., 289, 371–380 (2003).

    Article  CAS  Google Scholar 

  13. A. Balandina, V. Mamedov, X. Franck, B. Figadère, and S. Latypov, Tetrahedron Lett., 45, 4003–4007 (2004).

    Article  CAS  Google Scholar 

  14. W. N. Moss and N. S. Goroff, J. Org. Chem., 70, 802–808 (2005).

    Article  CAS  Google Scholar 

  15. J. S. L. T. Militão, V. P. Emerenciano, M. J. P. Ferreira, D. Cabrol-Bass, and M. Rouillard, Chemometr. Intell. Lab. Systems, 67, 5–20 (2003).

    Article  Google Scholar 

  16. H. Satoh, H. Koshino, J. Uzawa, and T. Nakata, Tetrahedron, 59, 4539–4547 (2003).

    Article  CAS  Google Scholar 

  17. S. S. Liu, Z. N. Xia, Y. Liu, S. X. Cai, and Z. Li, Chin. J. Chem., 18, No. 2, 165–174 (2000).

    Google Scholar 

  18. A. Panaye, J. P. Doucet, and B. T. Fan, J. Chem. Inf. Comput. Sci., 33, 258–265 (1993).

    Article  CAS  Google Scholar 

  19. M. Jaiswal and P. Khadikar, Bioorgan. — Medicin. Chem. Lett., 12, 1793–1798 (2004).

    Article  CAS  Google Scholar 

  20. P. V. Khadikar, V. Sharma, and R. G. Varma, Bioorgan. & Medicin. Chem. Lett., 15, 421–425 (2005).

    Article  CAS  Google Scholar 

  21. C. M. Nie, Z. H. Li, and S. N. Wen, Chin. J. Organ. Chem., 22, No. 1, (in Chinese) (2002).

  22. C. Z. Cao and Z. Li, J. Chem. Inf. Comput. Sci., 38, 1–7 (1998).

    Article  CAS  Google Scholar 

  23. R. D. Beger and J. G. Wilkes, J. Chem. Inf. Comput. Sci., 41, 1322–1329 (2001).

    Article  CAS  Google Scholar 

  24. Sadtler Standard Carbon-13 NMR Spectra, Sadtler Research Laboratories Division of Bio-Rad Laboratories, INC. Printed in USA (1980).

  25. http://www.aist.go.jp/RIODB/SDBS/cgi-bin/cre_index.cgi.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Tong.

Additional information

Original Russian Text Copyright © 2012 by J. Tong, Y. Chen, S. Liu, X. Xu, F. Cheng

The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 53, No. 6, pp. 1102–1106, November–December, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tong, J., Chen, Y., Liu, S. et al. Estimation and prediction of 13C NMR chemical shifts of carbon atoms in both alcohols and thiols. J Struct Chem 53, 1075–1080 (2012). https://doi.org/10.1134/S002247661206008X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002247661206008X

Keywords

Navigation