Skip to main content
Log in

Critical Role of Endothelial Lysophosphatidylcholine Transporter Mfsd2a in Maintaining Blood–Brain Barrier Integrity and Delivering Omega 3 PUFA to the Brain

  • Reviews
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The protein Mfsd2a (Major Facilitator Superfamily Domain Containing 2a), a specific Na+-dependent transporter of lysophosphatidylcholine (lysoPC) esterified by omega-3 polyunsaturated fatty acids (PUFA), is selectively expressed in the endothelium of brain capillaries. This review summarizes current concepts on the molecular mechanisms of its functioning in endothelial cells and the role of transported lipids in the inhibition of caveolin-dependent transcytosis and maintaining a low permeability of the blood–brain barrier (BBB). A special focus is on the Mfsd2a-mediated lysoPC transfer as it is a major route of entry into the brain and retina for docosahexaenoic acid and other omega-3 PUFA essential for the normal development and functioning of the CNS and visual system. The protective role of Mfsd2a in various CNS neuropathologies is also discussed, as well as the prospects for developing Mfsd2a-based therapeutic strategies to increase the bioavailability of essential PUFA and to deliver the drugs that do not penetrate the BBB to brain tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Hawkins BT, Davis TP (2005) The blood–brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57(2):173–185. https://doi.org/10.1124/pr.57.2.4

    Article  CAS  PubMed  Google Scholar 

  2. Salmina AB, Komleva YK, Malinovskaya NA, Morgun AV, Teplyashina EA, Lopatina OL, Gorina YV, Kharitonova EV, Khilazheva ED, Shuvaev AN (2021) Blood–brain Barrier Breakdown in Stress and Neurodegeneration: Biochemical Mechanisms and New Models for Translational Research. Biochemistry (Mosc) 86(6): 746–760. https://doi.org/10.1134/S0006297921060122

  3. Kaya M, Ahishali B (2021) Basic physiology of the blood–brain barrier in health and disease: a brief overview. Tissue Barriers 9(1):1840913. https://doi.org/10.1080/21688370.2020.1840913

    Article  CAS  PubMed  Google Scholar 

  4. Brightman MW, Reese TS (1969) Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol 40(3):648–677. https://doi.org/10.1083/jcb.40.3.648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Reese TS, Karnovsky MJ (1967) Fine structural localization of a blood–brain barrier to exogenous peroxidase. J Cell Biol 34(1):207–217. https://doi.org/10.1083/jcb.34.1.207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ayloo S, Gu C (2019) Transcytosis at the blood–brain barrier. Curr Opin Neurobiol 57:32–38. https://doi.org/10.1016/j.conb.2018.12.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yan N (2015) Structural Biology of the Major Facilitator Superfamily Transporters. Annu Rev Biophys 44:257–283. https://doi.org/10.1146/annurev-biophys-060414-033901

    Article  CAS  PubMed  Google Scholar 

  8. Reddy VS, Shlykov MA, Castillo R, Sun EI, Saier MH Jr (2012) The major facilitator superfamily (MFS) revisited. FEBS J 279(11):2022–2035. https://doi.org/10.1111/j.1742-4658.2012.08588.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Angers M, Uldry M, Kong D, Gimble JM, Jetten AM (2008) Mfsd2a encodes a novel major facilitator superfamily domain-containing protein highly induced in brown adipose tissue during fasting and adaptive thermogenesis. Biochem J 416(3):347–355. https://doi.org/10.1042/BJ20080165

    Article  CAS  PubMed  Google Scholar 

  10. Cater RJ, Chua GL, Erramilli SK, Keener JE, Choy BC, Tokarz P, Chin CF, Quek DQY, Kloss B, Pepe JG, Parisi G, Wong BH, Clarke OB, Marty MT, Kossiakoff AA, Khelashvili G, Silver DL, Mancia F (2021) Structural basis of omega-3 fatty acid transport across the blood–brain barrier. Nature 595(7866):315–319. https://doi.org/10.1038/s41586-021-03650-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Berger JH, Charron MJ, Silver DL (2012) Major facilitator superfamily domain-containing protein 2a (MFSD2A) has roles in body growth, motor function, and lipid metabolism. PLoS One 7(11): e50629. https://doi.org/10.1371/journal.pone.0050629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ben-Zvi A, Lacoste B, Kur E, Andreone BJ, Mayshar Y, Yan H, Gu C (2014) Mfsd2a is critical for the formation and function of the blood–brain barrier. Nature 509(7501):507–511. https://doi.org/10.1038/nature13324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nguyen LN, Ma D, Shui G, Wong P, Cazenave-Gassiot A, Zhang X, Wenk MR, Goh EL, Silver DL (2014) Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid. Nature 509(7501):503–506. https://doi.org/10.1038/nature13241

    Article  CAS  PubMed  Google Scholar 

  14. Alakbarzade V, Hameed A, Quek DQ, Chioza BA, Baple EL, Cazenave-Gassiot A, Nguyen LN, Wenk MR, Ahmad AQ, Sreekantan-Nair A, Weedon MN, Rich P, Patton MA, Warner TT, Silver DL, Crosby AH (2015) A partially inactivating mutation in the sodium-dependent lysophosphatidylcholine transporter MFSD2A causes a non-lethal microcephaly syndrome. Nat Genet 47(7):814–817. https://doi.org/10.1038/ng.3313

    Article  CAS  PubMed  Google Scholar 

  15. Guemez-Gamboa A, Nguyen LN, Yang H, Zaki MS, Kara M, Ben-Omran T, Akizu N, Rosti RO, Rosti B, Scott E, Schroth J, Copeland B, Vaux KK, Cazenave-Gassiot A, Quek DQ, Wong BH, Tan BC, Wenk MR, Gunel M, Gabriel S, Chi NC, Silver DL, Gleeson JG (2015) Inactivating mutations in MFSD2A, required for omega-3 fatty acid transport in brain, cause a lethal microcephaly syndrome. Nat Genet 47(7):809–813. https://doi.org/10.1038/ng.3311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bazinet RP, Laye S (2014) Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat Rev Neurosci 15(12):771–785. https://doi.org/10.1038/nrn3820

    Article  CAS  PubMed  Google Scholar 

  17. Parnova R (2021) GPR40/FFA1 Free Fatty Acid Receptors and Their Functional Role. Neuroscience and Behavioral Physiology 51(2):256–264. https://doi.org/10.1007/s11055-021-01064-8

    Article  CAS  Google Scholar 

  18. Crupi R, Marino A, Cuzzocrea S (2013) n-3 fatty acids: role in neurogenesis and neuroplasticity. Curr Med Chem 20(24):2953–2963. https://doi.org/10.2174/09298673113209990140

    Article  CAS  PubMed  Google Scholar 

  19. Lagarde M, Bernoud N, Brossard N, Lemaitre-Delaunay D, Thies F, Croset M, Lecerf J (2001) Lysophosphatidylcholine as a preferred carrier form of docosahexaenoic acid to the brain. J Mol Neurosci 16(2–3):201–204; discussion 215–221. https://doi.org/10.1385/JMN:16:2-3:201

    Article  CAS  PubMed  Google Scholar 

  20. Thies F, Delachambre MC, Bentejac M, Lagarde M, Lecerf J (1992) Unsaturated fatty acids esterified in 2-acyl-l-lysophosphatidylcholine bound to albumin are more efficiently taken up by the young rat brain than the unesterified form. J Neurochem 59(3):1110–1116. https://doi.org/10.1111/j.1471-4159.1992.tb08353.x

    Article  CAS  PubMed  Google Scholar 

  21. Thies F, Pillon C, Moliere P, Lagarde M, Lecerf J (1994) Preferential incorporation of sn-2 lysoPC DHA over unesterified DHA in the young rat brain. Am J Physiol 267(5 Pt 2):R1273–R1279. https://doi.org/10.1152/ajpregu.1994.267.5.R1273

    Article  CAS  PubMed  Google Scholar 

  22. Sugasini D, Yalagala PCR, Goggin A, Tai LM, Subbaiah PV (2019) Enrichment of brain docosahexaenoic acid (DHA) is highly dependent upon the molecular carrier of dietary DHA: lysophosphatidylcholine is more efficient than either phosphatidylcholine or triacylglycerol. J Nutr Biochem 74:108231. https://doi.org/10.1016/j.jnutbio.2019.108231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sugasini D, Thomas R, Yalagala PCR, Tai LM, Subbaiah PV (2017) Dietary docosahexaenoic acid (DHA) as lysophosphatidylcholine, but not as free acid, enriches brain DHA and improves memory in adult mice. Sci Rep 7(1):11263. https://doi.org/10.1038/s41598-017-11766-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chouinard-Watkins R, Lacombe RJS, Bazinet RP (2018) Mechanisms regulating brain docosahexaenoic acid uptake: what is the recent evidence? Curr Opin Clin Nutr Metab Care 21(2): 71–77. https://doi.org/10.1097/MCO.0000000000000440

    Article  CAS  PubMed  Google Scholar 

  25. Martins JG (2009) EPA but not DHA appears to be responsible for the efficacy of omega-3 long chain polyunsaturated fatty acid supplementation in depression: evidence from a meta-analysis of randomized controlled trials. J Am Coll Nutr 28(5):525–542. https://doi.org/10.1080/07315724.2009.10719785

    Article  CAS  PubMed  Google Scholar 

  26. Yalagala PCR, Sugasini D, Dasarathi S, Pahan K, Subbaiah PV (2019) Dietary lysophosphatidylcholine-EPA enriches both EPA and DHA in the brain: potential treatment for depression. J Lipid Res 60(3):566–578. https://doi.org/10.1194/jlr.M090464

    Article  CAS  PubMed  Google Scholar 

  27. Andreone BJ, Chow BW, Tata A, Lacoste B, Ben-Zvi A, Bullock K, Deik AA, Ginty DD, Clish CB, Gu C (2017) Blood–brain Barrier Permeability Is Regulated by Lipid Transport-Dependent Suppression of Caveolae-Mediated Transcytosis. Neuron 94(3):581–594 e5. https://doi.org/10.1016/j.neuron.2017.03.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Parton RG, Tillu VA, Collins BM (2018) Caveolae. Curr Biol 28(8):R402–R405. https://doi.org/10.1016/j.cub.2017.11.075

    Article  CAS  PubMed  Google Scholar 

  29. Wassall SR, Stillwell W (2008) Docosahexaenoic acid domains: the ultimate non-raft membrane domain. Chem Phys Lipids 153(1):57–63. https://doi.org/10.1016/j.chemphyslip.2008.02.010

    Article  CAS  PubMed  Google Scholar 

  30. Li Q, Zhang Q, Wang M, Liu F, Zhao S, Ma J, Luo N, Li N, Li Y, Xu G, Li J (2007) Docosahexaenoic acid affects endothelial nitric oxide synthase in caveolae. Arch Biochem Biophys 466(2): 250–259. https://doi.org/10.1016/j.abb.2007.06.023

    Article  CAS  PubMed  Google Scholar 

  31. Ma DW, Seo J, Davidson LA, Callaway ES, Fan YY, Lupton JR, Chapkin RS (2004) n-3 PUFA alter caveolae lipid composition and resident protein localization in mouse colon. FASEB J 18(9):1040–1052. https://doi.org/10.1096/fj.03-1430fje

    Article  CAS  PubMed  Google Scholar 

  32. Li Q, Zhang Q, Wang M, Zhao S, Ma J, Luo N, Li N, Li Y, Xu G, Li J (2007) Eicosapentaenoic acid modifies lipid composition in caveolae and induces translocation of endothelial nitric oxide synthase. Biochimie 89(1):169–177. https://doi.org/10.1016/j.biochi.2006.10.009

    Article  CAS  PubMed  Google Scholar 

  33. Turk HF, Chapkin RS (2013) Membrane lipid raft organization is uniquely modified by n-3 polyunsaturated fatty acids. Prostaglandins Leukot Essent Fatty Acids 88(1):43–47. https://doi.org/10.1016/j.plefa.2012.03.008

    Article  CAS  PubMed  Google Scholar 

  34. Shaikh SR (2012) Biophysical and biochemical mechanisms by which dietary N-3 polyunsaturated fatty acids from fish oil disrupt membrane lipid rafts. J Nutr Biochem 23(2):101–105. https://doi.org/10.1016/j.jnutbio.2011.07.001

    Article  CAS  PubMed  Google Scholar 

  35. Eser Ocak P, Ocak U, Sherchan P, Zhang JH, Tang J (2020) Insights into major facilitator superfamily domain-containing protein-2a (Mfsd2a) in physiology and pathophysiology. What do we know so far? J Neurosci Res 98(1):29–41. https://doi.org/10.1002/jnr.24327

    Article  CAS  PubMed  Google Scholar 

  36. Cui Y, Wang Y, Song X, Ning H, Zhang Y, Teng Y, Wang J, Yang X (2021) Brain endothelial PTEN/AKT/NEDD4-2/MFSD2A axis regulates blood–brain barrier permeability. Cell Rep 36(1): 109327. https://doi.org/10.1016/j.celrep.2021.109327

    Article  CAS  PubMed  Google Scholar 

  37. Cui M, Gobel V, Zhang H (2022) Uncovering the “sphinx” of sphingosine 1-phosphate signalling: from cellular events to organ morphogenesis. Biol Rev Camb Philos Soc 97(1):251–272. https://doi.org/10.1111/brv.12798

    Article  PubMed  Google Scholar 

  38. Zhu D, Wang Y, Singh I, Bell RD, Deane R, Zhong Z, Sagare A, Winkler EA, Zlokovic BV (2010) Protein S controls hypoxic/ischemic blood–brain barrier disruption through the TAM receptor Tyro3 and sphingosine 1-phosphate receptor. Blood 115(23):4963–4972. https://doi.org/10.1182/blood-2010-01-262386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang Z, Zheng Y, Wang F, Zhong J, Zhao T, Xie Q, Zhu T, Ma F, Tang Q, Zhou B, Zhu J (2020) Mfsd2a and Spns2 are essential for sphingosine-1-phosphate transport in the formation and maintenance of the blood–brain barrier. Sci Adv 6(22):eaay8627. https://doi.org/10.1126/sciadv.aay8627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Huwiler A, Zangemeister-Wittke U (2018) The sphingosine 1-phosphate receptor modulator fingolimod as a therapeutic agent: Recent findings and new perspectives. Pharmacol Ther 185:34–49. https://doi.org/10.1016/j.pharmthera.2017.11.001

    Article  CAS  PubMed  Google Scholar 

  41. Fukuhara S, Simmons S, Kawamura S, Inoue A, Orba Y, Tokudome T, Sunden Y, Arai Y, Moriwaki K, Ishida J, Uemura A, Kiyonari H, Abe T, Fukamizu A, Hirashima M, Sawa H, Aoki J, Ishii M, Mochizuki N (2012) The sphingosine-1-phosphate transporter Spns2 expressed on endothelial cells regulates lymphocyte trafficking in mice. J Clin Invest 122(4):1416–1426. https://doi.org/10.1172/JCI60746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cunha-Vaz JG, Shakib M, Ashton N (1966) Studies on the permeability of the blood-retinal barrier. I. On the existence, development, and site of a blood-retinal barrier. Br J Ophthalmol 50(8): 441–453. https://doi.org/10.1136/bjo.50.8.441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. SanGiovanni JP, Chew EY (2005) The role of omega-3 long-chain polyunsaturated fatty acids in health and disease of the retina. Prog Retin Eye Res 24(1):87–138. https://doi.org/10.1016/j.preteyeres.2004.06.002

    Article  CAS  PubMed  Google Scholar 

  44. Fliesler SJ, Anderson RE (1983) Chemistry and metabolism of lipids in the vertebrate retina. Prog Lipid Res 22(2):79–131. https://doi.org/10.1016/0163-7827(83)90004-8

    Article  CAS  PubMed  Google Scholar 

  45. Aveldano MI, Sprecher H (1987) Very long chain (C24 to C36) polyenoic fatty acids of the n-3 and n-6 series in dipolyunsaturated phosphatidylcholines from bovine retina. J Biol Chem 262(3): 1180–1186.

    Article  CAS  Google Scholar 

  46. Sugasini D, Yalagala PCR, Subbaiah PV (2020) Efficient Enrichment of Retinal DHA with Dietary Lysophosphatidylcholine-DHA: Potential Application for Retinopathies. Nutrients 12(10):3114. https://doi.org/10.3390/nu12103114

    Article  CAS  PubMed Central  Google Scholar 

  47. Lobanova ES, Schuhmann K, Finkelstein S, Lewis TR, Cady MA, Hao Y, Keuthan C, Ash JD, Burns ME, Shevchenko A, Arshavsky VY (2019) Disrupted Blood-Retina Lysophosphatidylcholine Transport Impairs Photoreceptor Health But Not Visual Signal Transduction. J Neurosci 39(49):9689–9701. https://doi.org/10.1523/jneurosci.1142-19.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wong BH, Chan JP, Cazenave-Gassiot A, Poh RW, Foo JC, Galam DL, Ghosh S, Nguyen LN, Barathi VA, Yeo SW, Luu CD, Wenk MR, Silver DL (2016) Mfsd2a Is a Transporter for the Essential omega-3 Fatty Acid Docosahexaenoic Acid (DHA) in Eye and Is Important for Photoreceptor Cell Development. J Biol Chem 291(20):10501–10514. https://doi.org/10.1074/jbc.M116.721340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wong BH, Silver DL (2020) Mfsd2a: A Physiologically Important Lysolipid Transporter in the Brain and Eye. Adv Exp Med Biol 1276:223–234. https://doi.org/10.1007/978-981-15-6082-8_14

    Article  CAS  PubMed  Google Scholar 

  50. Huang B, Li X (2021) The Role of Mfsd2a in Nervous System Diseases. Front Neurosci 15:730534. https://doi.org/10.3389/fnins.2021.730534

    Article  PubMed  PubMed Central  Google Scholar 

  51. Yang YR, Xiong XY, Liu J, Wu LR, Zhong Q, Zhou K, Meng ZY, Liu L, Wang FX, Gong QW, Liao MF, Duan CM, Li J, Yang MH, Zhang Q, Gong CX, Yang QW (2017) Mfsd2a (Major Facilitator Superfamily Domain Containing 2a) Attenuates Intracerebral Hemorrhage-Induced Blood–Brain Barrier Disruption by Inhibiting Vesicular Transcytosis. J Am Heart Assoc 6(7):e005811. https://doi.org/10.1161/JAHA.117.005811

    Article  PubMed  PubMed Central  Google Scholar 

  52. Jiao X, He P, Li Y, Fan Z, Si M, Xie Q, Chang X, Huang D (2015) The Role of Circulating Tight Junction Proteins in Evaluating Blood Brain Barrier Disruption following Intracranial Hemorrhage. Dis Markers 2015:860120. https://doi.org/10.1155/2015/860120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. De Bock M, Van Haver V, Vandenbroucke RE, Decrock E, Wang N, Leybaert L (2016) Into rather unexplored terrain-transcellular transport across the blood–brain barrier. Glia 64(7):1097–1123. https://doi.org/10.1002/glia.22960

    Article  PubMed  Google Scholar 

  54. Zhao C, Ma J, Wang Z, Li H, Shen H, Li X, Chen G (2020) Mfsd2a Attenuates Blood–brain Barrier Disruption After Sub-arachnoid Hemorrhage by Inhibiting Caveolae-Mediated Transcellular Transport in Rats. Transl Stroke Res 11(5): 1012–1027. https://doi.org/10.1007/s12975-019-00775-y

    Article  PubMed  Google Scholar 

  55. Eser Ocak P, Ocak U, Sherchan P, Gamdzyk M, Tang J, Zhang JH (2020) Overexpression of Mfsd2a attenuates blood brain barrier dysfunction via Cav-1/Keap-1/Nrf-2/HO-1 pathway in a rat model of surgical brain injury. Exp Neurol 326: 113203. https://doi.org/10.1016/j.expneurol.2020.113203

    Article  CAS  PubMed  Google Scholar 

  56. Qu C, Song H, Shen J, Xu L, Li Y, Qu C, Li T, Zhang J (2020) Mfsd2a Reverses Spatial Learning and Memory Impairment Caused by Chronic Cerebral Hypoperfusion via Protection of the Blood–Brain Barrier. Front Neurosci 14:461. https://doi.org/10.3389/fnins.2020.00461

    Article  PubMed  PubMed Central  Google Scholar 

  57. Freund-Levi Y, Eriksdotter-Jonhagen M, Cederholm T, Basun H, Faxen-Irving G, Garlind A, Vedin I, Vessby B, Wahlund LO, Palmblad J (2006) Omega-3 fatty acid treatment in 174 patients with mild to moderate Alzheimer disease: OmegAD study: a randomized double-blind trial. Arch Neurol 63(10):1402–1408. https://doi.org/10.1001/archneur.63.10.1402

    Article  PubMed  Google Scholar 

  58. Sanchez-Campillo M, Ruiz-Pastor MJ, Gazquez A, Marin-Munoz J, Noguera-Perea F, Ruiz-Alcaraz AJ, Manzanares-Sanchez S, Antunez C, Larque E (2019) Decreased Blood Level of MFSD2a as a Potential Biomarker of Alzheimer's Disease. Int J Mol Sci 21(1):70. https://doi.org/10.3390/ijms21010070

    Article  CAS  PubMed Central  Google Scholar 

  59. Semba RD (2020) Perspective: The Potential Role of Circulating Lysophosphatidylcholine in Neuroprotection against Alzheimer Disease. Adv Nutr 11(4):760–772. https://doi.org/10.1093/advances/nmaa024

    Article  PubMed  PubMed Central  Google Scholar 

  60. Hachem M, Nacir H, Picq M, Belkouch M, Bernoud-Hubac N, Windust A, Meiller L, Sauvinet V, Feugier N, Lambert-Porcheron S, Laville M, Lagarde M (2020) Docosahexaenoic Acid (DHA) Bioavailability in Humans after Oral Intake of DHA-Containing Triacylglycerol or the Structured Phospholipid AceDoPC((R)). Nutrients 12(1):251. https://doi.org/10.3390/nu12010251

    Article  CAS  PubMed Central  Google Scholar 

  61. Hachem M, Geloen A, Van AL, Foumaux B, Fenart L, Gosselet F, Da Silva P, Breton G, Lagarde M, Picq M, Bernoud-Hubac N (2016) Efficient Docosahexaenoic Acid Uptake by the Brain from a Structured Phospholipid. Mol Neurobiol 53(5):3205–3215. https://doi.org/10.1007/s12035-015-9228-9

    Article  CAS  PubMed  Google Scholar 

  62. Ju X, Miao T, Chen H, Ni J, Han L (2021) Overcoming Mfsd2a-Mediated Low Transcytosis to Boost Nanoparticle Delivery to Brain for Chemotherapy of Brain Metastases. Adv Healthc Mater 10(9):e2001997. https://doi.org/10.1002/adhm.202001997

    Article  CAS  PubMed  Google Scholar 

  63. Wang JZ, Xiao N, Zhang YZ, Zhao CX, Guo XH, Lu LM (2016) Mfsd2a-based pharmacological strategies for drug delivery across the blood–brain barrier. Pharmacol Res 104:124–131. https://doi.org/10.1016/j.phrs.2015.12.024

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This review article was implemented within the state assignment to the Sechenov Institute of Evolutionary Physiology and Biochemistry (Russian Academy of Sciences), no. 075-00776-19-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. G. Parnova.

Ethics declarations

CONFLICT OF INTEREST

The author has no conflict of interest related to the publication of this article.

Additional information

Translated by A. Polyanovsky

Russian Text © The Author(s), 2022, published in Rossiiskii Fiziologicheskii Zhurnal imeni I.M. Sechenova, 2022, Vol. 108, No. 5, pp. 547–561https://doi.org/10.31857/S0869813922050090.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parnova, R.G. Critical Role of Endothelial Lysophosphatidylcholine Transporter Mfsd2a in Maintaining Blood–Brain Barrier Integrity and Delivering Omega 3 PUFA to the Brain. J Evol Biochem Phys 58, 742–754 (2022). https://doi.org/10.1134/S0022093022030103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093022030103

Keywords:

Navigation