Skip to main content
Log in

A New Insight Into the Anti-Proliferative and Apoptotic Effects of Betatrophin on Human Ovarian Cancer Cell Line Skov-3

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Objective: Ovarian cancer is one of the most common and deadly cancers in women; it has a high resistance to treatment, emphasizing the need for a new therapeutic approach. In the present study, the effect of betatrophin, a protein member of the ANGPTL family, on the expression of BAX and Bcl-2 genes in the apoptosis pathway in the ovarian Skov-3 cell line was investigated. Methods: The Skov-3 ovarian cell line was treated with different betatrophin concentrations for 48, 72, and 96 hours. The MTT assay was utilized to investigate the viability of cells after treatment, and the apoptotic-inducing effect of betatrophin was evaluated by Annexin V/ propidium iodide double staining. Quantitative real-time PCR was used to determine the expression level of BAX and Bcl-2 genes. Results: According to the findings, betatrophin was able to reduce the viability of Skov-3 cells and thus prevent their development. This effect was shown to be concentration and time dependent with IC50 being 930.7, 811.4, and 761.5 ng/mL for 48, 72, and 96 hours, respectively. Additionally, betatrophin decreased Bcl-2 anti-apoptotic protein expression and increased BAX pro-apoptotic protein expression. Conclusion: The obtained results suggested the ability of betatrophin to induce apoptosis via its cytotoxic effects on Skov-3 cell lines at higher concentrations through affecting the BAX/Bcl-2 expression ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. Ahmedin Jemal D, Siegel R, Xu J, Thun MJ (2009) Cancer statistics, 2009. CA Cancer J Clin 59:225–249. https://doi.org/10.3322/caac.20006

    Article  PubMed  Google Scholar 

  2. Perez-Tomas R (2006) Multidrug resistance: retrospect and prospects in anti-cancer drug treatment. Curr Med Chem 13:1859–1876. https://doi.org/10.2174/092986706777585077e

    Article  CAS  PubMed  Google Scholar 

  3. National Cancer Institute. SEER Stat Fact Sheets: cervix uteri cancer [cited 2015 January 21]. Available from: http://seer.cancer.gov/statfacts/html/cervix.html

  4. Parkin DM, Bray F, Ferlay J, Pisani P (2001) Estimating the world cancer burden: Globocan 2000. Int J Cancer 94:153–156. https://doi.org/10.1002/ijc.1440

    Article  CAS  PubMed  Google Scholar 

  5. Centers for Disease Control and Prevention.United States Cancer Statistics [cited 2017 June 28]. Available from: https://www.cdc.gov/cancer/uscs/index.htm

  6. Ford D, Easton D (1995) The genetics of breast and ovarian cancer. Br J Cancer 72:805–812. https://doi.org/10.1038/bjc.1995.417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Harlan LC, Clegg LX, Trimble EL (2003) Trends in surgery and chemotherapy for women diagnosed with ovarian cancer in the United States. J Clin Oncol 21:3488–3494. https://doi.org/10.1200/JCO.2003.01.061

    Article  PubMed  Google Scholar 

  8. Young RC, Walton LA, Ellenberg SS, Homesley HD, Wilbanks GD, Decker DG, Miller A, Park R, Major F Jr (1990) Adjuvant therapy in stage I and stage II epithelial ovarian cancer: results of two prospective randomized trials. N Engl J Med 322:1021–1027. https://doi.org/10.1056/NEJM199004123221501

    Article  CAS  PubMed  Google Scholar 

  9. Agarwal R, Kaye SB (2003) Ovarian cancer: strategies for overcoming resistance to chemotherapy. Nat Rev Cancer 3:502–516. https://doi.org/10.1038/nrc1123

    Article  CAS  PubMed  Google Scholar 

  10. Abu-Farha M, Abubaker J, Al-Khairi I, Cherian P, Noronha F, Kavalakatt S, Khadir A, Behbehani K, Alarouj M, Bennakhi A (2016) Circulating angiopoietin-like protein 8 (betatrophin) association with HsCRP and metabolic syndrome. Cardiovasc Diabetol 15:1–8. https://doi.org/10.1186/s12933-016-0346-0

    Article  CAS  Google Scholar 

  11. Dong XY, Pang XW, Yu ST, Su YR, Wang HC, Yin YH, Wang YD, Chen WF (2004) Identification of genes differentially expressed in human hepatocellular carcinoma by a modified suppression subtractive hybridization method. Int J Cancer 112:239–248. https://doi.org/10.1002/ijc.20363

    Article  CAS  PubMed  Google Scholar 

  12. Ren G, Kim JY, Smas CM (2012) Identification of RIFL, a novel adipocyte-enriched insulin target gene with a role in lipid metabolism. Am J Physiol Endocrinol Metab 303:E334–E351. https://doi.org/10.1152/ajpendo.00084.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fu Z, Yao F, Abou-Samra AB, Zhang R (2013) Lipasin, thermoregulated in brown fat, is a novel but atypical member of the angiopoietin-like protein family. Biochem Biophys Res Commun 430:1126–1131. https://doi.org/10.1016/j.bbrc.2012.12.025

    Article  CAS  PubMed  Google Scholar 

  14. Li Y, Teng C (2014) Angiopoietin-like proteins 3, 4 and 8: regulating lipid metabolism and providing new hope for metabolic syndrome. J Drug Target 22:679–687. https://doi.org/10.3109/1061186X.2014.928715

    Article  CAS  PubMed  Google Scholar 

  15. Dijk W, Kersten S (2016) Regulation of lipid metabolism by angiopoietin-like proteins. Curr Opin Lipidol 27:249–256. https://doi.org/10.1097/MOL.0000000000000290

    Article  CAS  PubMed  Google Scholar 

  16. Yi P, Park J-S, Melton DA (2013) Betatrophin: A Hormone that Controls Pancreatic β Cell Proliferation. Cell 153:747–758. https://doi.org/10.1016/j.cell.2013.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gusarova V, Alexa CA, Na E, Stevis PE, Xin Y, Bonner-Weir S, Cohen JC, Hobbs HH, Murphy AJ, Yancopoulos GD (2014) ANGPTL8/betatrophin does not control pancreatic beta cell expansion. Cell 159:691–696. https://doi.org/10.1016/j.cell.2014.09.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jiao Y, Le Lay J, Yu M, Naji A, Kaestner KH (2014) Elevated mouse hepatic betatrophin expression does not increase human β-cell replication in the transplant setting. Diabetes 63:1283–1288. https://doi.org/10.2337/db13-1435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang R, Abou-Samra AB (2014) A dual role of lipasin (betatrophin) in lipid metabolism and glucose homeostasis: consensus and controversy. Cardiovasc Diabetol 13:1–10. https://doi.org/10.1186/s12933-014-0133-8

    Article  Google Scholar 

  20. Quagliarini F, Wang Y, Kozlitina J, Grishin NV, Hyde R, Boerwinkle E, Valenzuela DM, Murphy AJ, Cohen JC, Hobbs HH (2012) Atypical angiopoietin-like protein that regulates ANGPTL3. Proc Natl Acad Sci USA 109:19751–19756. https://doi.org/10.1073/pnas.1217552109

    Article  PubMed  PubMed Central  Google Scholar 

  21. Carbone C, Piro G, Merz V, Simionato F, Santoro R, Zecchetto C, Tortora G, Melisi D (2018) Angiopoietin-like proteins in angiogenesis, inflammation and cancer. Int J Mol Sci 19:431. https://doi.org/10.3390/ijms19020431

    Article  CAS  PubMed Central  Google Scholar 

  22. Kikuchi R, Tsuda H, Kozaki K-i, Kanai Y, Kasamatsu T, Sengoku K, Hirohashi S, Inazawa J, Imoto I (2008) Frequent inactivation of a putative tumor suppressor, angiopoietin-like protein 2, in ovarian cancer. Cancer Res 68:5067–5075. https://doi.org/10.1158/0008-5472.CAN-08-0062

    Article  CAS  PubMed  Google Scholar 

  23. Siamakpour-Reihani S, Owzar K, Jiang C, Turner T, Deng Y, Bean SM, Horton JK, Berchuck A, Marks JR, Dewhirst MW (2015) Prognostic significance of differential expression of angiogenic genes in women with high-grade serous ovarian carcinoma. Gynecol Oncol 139:23–29. https://doi.org/10.1016/j.ygyno.2015.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Parri M, Pietrovito L, Grandi A, Campagnoli S, De Camilli E, Bianchini F, Marchio S, Bussolino F, Jin B, Sarmientos P (2014) Angiopoietin-like 7, a novel pro-angiogenetic factor over-expressed in cancer. Angiogenesis 17:881–896. https://doi.org/10.1007/s10456-014-9435-4

    Article  CAS  PubMed  Google Scholar 

  25. Crujeiras AB, Zulet M, Abete I, Amil M, Carreira MC, Martínez JA, Casanueva FF (2016) Interplay of atherogenic factors, protein intake and betatrophin levels in obese–metabolic syndrome patients treated with hypocaloric diets. Int J Obes 40:403–410. https://doi.org/10.1038/ijo.2015.206

    Article  CAS  Google Scholar 

  26. Calan M, Yilmaz O, Kume T, Kocabas GU, Senses PY, Senses YM, Temur M, Calan OG (2016) Elevated circulating levels of betatrophin are associated with polycystic ovary syndrome. Endocrine 53:271–279. https://doi.org/10.1007/s12020-016-0875-z

    Article  CAS  PubMed  Google Scholar 

  27. Chen S, Chen J, Meng X-L, Shen J-S, Huang J, Huang P, Pu Z, McNeill NH, Grayburn PA (2016) ANGPTL8 reverses established adriamycin cardiomyopathy by stimulating adult cardiac progenitor cells. Oncotarget 7:80391. https://doi.org/10.18632/oncotarget.13061

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chen C-C, Susanto H, Chuang W-H, Liu T-Y, Wang C-H (2016) Higher serum betatrophin level in type 2 diabetes subjects is associated with urinary albumin excretion and renal function. Cardiovasc Diabetol 15:1–9. https://doi.org/10.1186/s12933-015-0326-9

    Article  CAS  Google Scholar 

  29. Tabas I, Ron D (2011) Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol 13:184–190. https://doi.org/10.1038/ncb0311-184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Naseri MH, Mahdavi M, Davoodi J, Tackallou SH, Goudarzvand M, Neishabouri SH (2015) Up regulation of Bax and down regulation of Bcl2 during 3-NC mediated apoptosis in human cancer cells. Cancer Cell Int 15:1–9. https://doi.org/10.1186/s12935-015-0204-2

    Article  CAS  Google Scholar 

  31. Shamas-Din A, Kale J, Leber B, Andrews DW (2013) Mechanisms of action of Bcl-2 family proteins. Cold Spring Harb Perspect Biol 5:a008714. https://doi.org/10.1101/cshperspect.a008714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Igney FH, Krammer PH (2002) Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer 2:277–288. https://doi.org/10.1038/nrc776

    Article  CAS  PubMed  Google Scholar 

  33. Shabani F, Farasat A, Mahdavi M, Gheibi N (2018) Calprotectin (S100A8/S100A9): a key protein between inflammation and cancer. Inflamm Res 67:801–812. https://doi.org/10.1007/s00011-018-1173-4

    Article  CAS  PubMed  Google Scholar 

  34. Delbridge AR, Grabow S, Strasser A, Vaux DL (2016) Thirty years of BCL-2: translating cell death discoveries into novel cancer therapies. Nat Rev Cancer 16:99–109. https://doi.org/10.1038/nrc.2015.17

    Article  CAS  PubMed  Google Scholar 

  35. Catz S, Johnson J (2003) BCL-2 in prostate cancer: a minireview. Apoptosis 8:29–37. https://doi.org/10.1023/a:1021692801278

    Article  CAS  PubMed  Google Scholar 

  36. Anagnostou VK, Lowery FJ, Zolota V, Tzelepi V, Gopinath A, Liceaga C, Panagopoulos N, Frangia K, Tanoue L, Boffa D (2010) High expression of BCL-2 predicts favorable outcome in non-small cell lung cancer patients with non squamous histology. BMC Cancer 10:1–11. https://doi.org/10.1186/1471-2407-10-186

    Article  Google Scholar 

  37. Hague A, Moorghen M, Hicks D, Chapman M, Paraskeva C (1994) BCL-2 expression in human colorectal adenomas and carcinomas. Oncogene 9:3367–3370. https://pubmed.ncbi.nlm.nih.gov/7936663

    CAS  PubMed  Google Scholar 

  38. Joensuu H, Pylkkänen L, Toikkanen S (1994) Bcl-2 protein expression and long-term survival in breast cancer. Am J Pathol 145:1191. http://www.ncbi.nlm.nih.gov/pmc/articles/pmc1887415/

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Anderson NS, Turner L, Livingston S, Chen R, Nicosia SV, Kruk PA (2009) Bcl-2 expression is altered with ovarian tumor progression: an immunohistochemical evaluation. J Ovarian Res 2:1–11. https://doi.org/10.1186/1757-2215-2-16

    Article  Google Scholar 

  40. Yip KW, Mocanu JD, Au PB, Sleep GT, Huang D, Busson P, Yeh W-C, Gilbert R, O’Sullivan B, Gullane P (2005) Combination bcl-2 antisense and radiation therapy for nasopharyngeal cancer. Clin Cancer Res 11:8131–8144. https://doi.org/10.1158/1078-0432.ccr-05-1266

    Article  CAS  PubMed  Google Scholar 

  41. Iqbal J, Sanger WG, Horsman DE, Rosenwald A, Pickering DL, Dave B, Dave S, Xiao L, Cao K, Zhu Q (2004) BCL2 translocation defines a unique tumor subset within the germinal center B-cell-like diffuse large B-cell lymphoma. Am J Pathol 165:159–166. https://doi.org/10.1016/s0002-9440(10)63284-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kang MH, Reynolds CP (2009) Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy. Clin Cancer Res 15:1126–1132. https://doi.org/10.1158/1078-0432.ccr-08-0144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Florou D, Patsis C, Ardavanis A, Scorilas A (2013) Effect of doxorubicin, oxaliplatin, and methotrexate administration on the transcriptional activity of BCL-2 family gene members in stomach cancer cells. Cancer Biol Ther 14:587–596. https://doi.org/10.4161/cbt.24591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Korbakis D, Scorilas A (2012) Quantitative expression analysis of the apoptosis-related genes BCL2, BAX and BCL2L12 in gastric adenocarcinoma cells following treatment with the anticancer drugs cisplatin, etoposide and taxol. Tumour Biol 33:865–875. https://doi.org/10.1007/s13277-011-0313-z

    Article  CAS  PubMed  Google Scholar 

  45. Gholami S, Gheibi N, Falak R, Chegini KG (2018) Cloning, expression, purification and CD analysis of recombinant human betatrophin. Rep Biochem Mol Biol 6:158. https://www.ncbi.nlm.nih.gov/pmc/articles/pmc5941129

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Bienz M, Clevers H (2000) Linking colorectal cancer to Wnt signaling. Cell 103:311–320. https://doi.org/10.1016/s0092-8674(00)00122-7

    Article  CAS  PubMed  Google Scholar 

  47. Ozols RF, Bundy BN, Greer BE, Fowler JM, Clarke-Pearson D, Burger RA, Mannel RS, DeGeest K, Hartenbach EM, Baergen R (2003) Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected stage III ovarian cancer: a Gynecologic Oncology Group study. J Clin Oncol 21:3194–3200. https://doi.org/10.1200/jco.2003.02.153

    Article  CAS  PubMed  Google Scholar 

  48. Monzavi N, Zargar SJ, Gheibi N, Azad M, Rahmani B (2019) Angiopoietin-like protein 8 (betatrophin) may inhibit hepatocellular carcinoma through suppressing of the Wnt signaling pathway. Iran J Basic Med Sci 22:1166–1171. https://doi.org/10.22038/ijbms.2019.36612.8764

    Article  PubMed  PubMed Central  Google Scholar 

  49. Navaeian M, Ahmadpour-Yazdi H, Asadian S, Gheibi N (2021) The effect of ANGPTL8 protein on proliferation and apoptosis in HepG2 hepatocellular carcinoma cell line. Gene Reports 25:101306. https://doi.org/10.1016/j.genrep.2021.101306

    Article  CAS  Google Scholar 

  50. Taherkhani F, Hosseini KM, Zebardast S, Chegini KG, Gheibi N (2020) Anti proliferative and apoptotic effects on pancreatic cancer cell lines indicate new roles for ANGPTL8 (Betatrophin). Genet Mol Biol 43(3):e20190196. https://doi.org/10.1590/1678-4685-GMB-2019-0196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Varikasuvu SR, Panga JR, Satyanarayana M (2019) Circulating Angiopoietin-like 8 protein (ANGPTL8/Betatrophin) in patients with polycystic ovary syndrome: A systematic review and multi effect size meta-analysis. Gynecol Endocrinol 35:190–197. https://doi.org/10.1080/09513590.2018.1536736

    Article  CAS  PubMed  Google Scholar 

  52. Harris HR, Cushing-Haugen KL, Webb PM, Nagle CM, Jordan SJ, Group AOCS, Risch HA, Rossing MA, Doherty JA, Goodman MT (2019) Association between genetically predicted polycystic ovary syndrome and ovarian cancer: a Mendelian randomization study. Int J Epidemiol 48:822–830. https://doi.org/10.1093/ije/dyz113

    Article  PubMed  PubMed Central  Google Scholar 

  53. Harris HR, Babic A, Webb PM, Nagle CM, Jordan SJ, Risch HA, Rossing MA, Doherty JA, Goodman MT, Modugno F (2018) Polycystic ovary syndrome, oligomenorrhea, and risk of ovarian cancer histotypes: evidence from the Ovarian Cancer Association Consortium. Cancer Epidemiol Biomarkers Prev 27:174–182. https://doi.org/10.1158/1055-9965.epi-17-0655

    Article  PubMed  Google Scholar 

  54. Zhang Y, Zheng L, Huang K (2018) A new way to regulate inflammation: selective autophagic degradation of IKKγ mediated by ANGPTL8. Cell stress 2:66. https://doi.org/10.15698/cst2018.03.128

    Article  PubMed  PubMed Central  Google Scholar 

  55. Beg AA, Baldwin A (1993) The I kappa B proteins: multifunctional regulators of Rel/NF-kappa B transcription factors. Genes Dev 7:2064–2070. https://doi.org/10.1101/gad.7.11.2064

    Article  CAS  PubMed  Google Scholar 

  56. Feuillard J, Schuhmacher M, Kohanna S, Asso-Bonnet M, Ledeur F, Joubert-Caron R, Bissieres P, Polack A, Bornkamm GW, Raphaël M (2000) Inducible loss of NF-κB activity is associated with apoptosis and Bcl-2 down-regulation in Epstein-Barr virus-transformed B lymphocytes. Blood 95:2068–2075. https://doi.org/10.1182/blood.V95.6.2068.2068

    Article  CAS  PubMed  Google Scholar 

  57. Dolcet X, Llobet D, Pallares J, Matias-Guiu X (2005) NF-kB in development and progression of human cancer. Virchows Arch 446:475–482. https://doi.org/10.1007/s00428-005-1264-9

    Article  CAS  PubMed  Google Scholar 

  58. Mabuchi S, Ohmichi M, Nishio Y, Hayasaka T, Kimura A, Ohta T, Saito M, Kawagoe J, Takahashi K, Yada-Hashimoto N (2004) Inhibition of NFκB increases the efficacy of cisplatin in in vitro and in vivo ovarian cancer models. J Biol Chem 279:23477–23485. https://doi.org/10.1074/jbc.m313709200

    Article  CAS  PubMed  Google Scholar 

  59. Mabuchi S, Ohmichi M, Nishio Y, Hayasaka T, Kimura A, Ohta T, Kawagoe J, Takahashi K, Yada-Hashimoto N, Seino-Noda H (2004) Inhibition of inhibitor of nuclear factor-κB phosphorylation increases the efficacy of paclitaxel in in vitro and in vivo ovarian cancer models. Clin Cancer Res 10:7645–7654. https://doi.org/10.1158/1078-0432.ccr-04-0958

    Article  CAS  PubMed  Google Scholar 

  60. Xiao CW, Yan X, Li Y, Reddy SA, Tsang BK (2003) Resistance of human ovarian cancer cells to tumor necrosis factor α is a consequence of nuclear factor κB-mediated induction of Fas-associated death domain-like interleukin-1β-converting enzyme-like inhibitory protein. Endocrinology 144:623–630. https://doi.org/10.1210/en.2001-211024

    Article  CAS  PubMed  Google Scholar 

  61. Huo J, Bian X, Huang Y, Miao Z, Song L (2017) Inhibitory effect and mechanism of metformin on human ovarian cancer cells SKOV-3 and A2780. Eur Rev Med Pharmacol Sci 21:484–489. https://pubmed.ncbi.nlm.nih.gov/28239823

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Deputy for Research and Technology, Qazvin University of Medical Sciences, Qazvin, Iran.

Author information

Authors and Affiliations

Authors

Contributions

Mehdi Sahmani, has written the draft of the article and coordinated among the members of the group of authors, supporting the study and facilitating matters. Zahra Kianorooz, performed the experiments and collected the data. Amir Javadi, performed statistical analysis and prepared graphs. Nematollah Gheibi, has designed the study and provided tools and facilities. Koorosh Goodarzvand Chegini, has been involved in the preparation of materials, helped to produce recombinant betatrophin as well as involved in writing the article and following up on corrections.

Corresponding authors

Correspondence to N. Gheibi or K. G. Chegini.

Ethics declarations

Conflicts of interests

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahmani, M., Kianorooz, Z., Javadi, A. et al. A New Insight Into the Anti-Proliferative and Apoptotic Effects of Betatrophin on Human Ovarian Cancer Cell Line Skov-3. J Evol Biochem Phys 58, 715–727 (2022). https://doi.org/10.1134/S0022093022030085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093022030085

Keywords:

Navigation