Skip to main content
Log in

Stimulus Specific Adaptation Is Affected in Trace Amine-Associated Receptor 1 (TAAR1) Knockout Mice

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

TAAR1 is known as a neuromodulator of monoaminergic systems, providing the negative regulation of dopaminergic and serotonergic neuronal activity. The TAAR1 ability to regulate monoaminergic systems determines its prominent role in psychiatric and neurological disorders. The present study is aimed to provide further evidence for the role of TAAR1 in mismatch negativity (MMN) generation. The electroencephalogram was recorded in freely moving TAAR1 knockout and wild type mice. As the MMN response reflects a combination of stimulus-specific adaptation (SSA) and deviance detection (DD) response, we compare standard and deviant stimuli to the multi-standard control. The difference observed between the high-adapted standard and low-adapted control stimuli together with the similar response to deviant and control stimuli suggest that the MMN-like response in wild type mice most likely reflects the SSA. On the other hand, TAAR1 knockout mice show no difference between standard, deviant, and control stimuli, probably indicating that the SSA to repetitive stimuli is impaired in TAAR-KO mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Borowsky B, Adham N, Jones KA, Raddatz R, Artymyshyn R, Ogozalek KL, Durkin MM, Lakhlani PP, Bonini JA, Pathirana S, Boyle N, Pu X, Kouranova E, Lichtblau H, Ochoa FY, Branchek TA, Gerald C (2001) Trace amines: Identification of a family of mammalian G protein-coupled receptors. Proc Natl Acad Sci 98:8966–8971. https://doi.org/10.1073/pnas.151105198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bunzow JR, Sonders MS, Arttamangkul S, Harrison LM, Zhang G, Quigley DI, Darland T, Suchland KL, Pasumamula S, Kennedy JL, Olson SB, Magenis RE, Amara SG, Grandy DK (2001) Amphetamine, 3,4-methylenedioxymethamphetamine, lysergic acid diethylamide, and metabolites of the catecholamine neurotransmitters are agonists of a rat trace amine receptor. Mol Pharmacol 60:1181–1188. https://doi.org/10.1124/mol.60.6.1181

    Article  CAS  PubMed  Google Scholar 

  3. Lindemann L, Meyer C, Jeanneau K, Bradaia A, Ozmen L, Bluethmann H, Bettler B, Wettstein J, Borroni E, Moreau J, Hoener M (2008) Trace amine-associated receptor 1 modulates dopaminergic activity. J Pharmacol Exp Ther 324:948–956. https://doi.org/10.1124/jpet.107.132647

    Article  CAS  PubMed  Google Scholar 

  4. Di Cara B, Maggio R, Aloisi G, Rivet JM, Lundius EG, Yoshitake T, Svenningsson P, Brocco M, Gobert A, de Groote L, Cistarelli L, Veiga S, de Montrion CD, Rodriguez M, Galizzi JP, Lockhart BP, Cogé F, Boutin JA, Vayer P, Verdouw PM, Groenink L, Millan MJ (2011) Genetic deletion of trace amine 1 receptors reveals their role in auto-inhibiting the actions of ecstasy (MDMA). J Neurosci 31:16928–16940. https://doi.org/10.1523/JNEUROSCI.2502-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Espinoza S, Lignani G, Caffino L, Maggi S, Sukhanov I, Leo D, Mus L, Emanuele M, Ronzitti G, Harmeier A, Medrihan L, Sotnikova TD, Chieregatti E, Hoener MC, Benfenati F, Tucci V, Fumagalli F, Gainetdinov RR (2015) TAAR1 modulates cortical glutamate NMDA receptor function. Neuropsychopharmacology 40:2217–2227. https://doi.org/10.1038/npp.2015.65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pei Y, Asif-Malik A, Canales JJ (2016) Trace amines and the trace amine-associated receptor 1: Pharmacology, neurochemistry, and clinical implications. Front Neurosci 10:148. https://doi.org/10.3389/fnins.2016.00148

    Article  PubMed  PubMed Central  Google Scholar 

  7. Berry MD, Gainetdinov RR, Hoener MC, Shahid M (2017) Pharmacology of human trace amine-associated receptors: Therapeutic opportunities and challenges. Pharmacol Ther 180:161–180. https://doi.org/10.1016/j.pharmthera.2017.07.002

    Article  CAS  PubMed  Google Scholar 

  8. John J, Kukshal P, Bhatia T, Chowdari KV, Nimgaonkar VL, Deshpande SN, Thelma BK (2017) Possible role of rare variants in trace amine associated receptor 1 in schizophrenia. Schizophr Res 189:190–195. https://doi.org/10.1016/j.schres.2017.02.020

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dodd S, F. Carvalho A, Puri BK, Maes M, Bortolasci CC, Morris G, Berk M (2021) Trace Amine-Associated Receptor 1 (TAAR1): A new drug target for psychiatry? Neurosci Biobehav Rev 120:537–541. https://doi.org/10.1016/j.neubiorev.2020.09.028.

    Article  CAS  PubMed  Google Scholar 

  10. Wolinsky TD, Swanson CJ, Smith KE, Zhong H, Borowsky B, Seeman P, Branchek T, Gerald CP (2007) The Trace Amine 1 receptor knockout mouse: An animal model with relevance to schizophrenia. Genes, Brain Behav 6:628–639. https://doi.org/10.1111/j.1601-183X.2006.00292.x

    Article  CAS  Google Scholar 

  11. Polyakova NV, Vinogradova EP, Aleksandrov AA, Gainetdinov RR (2018) Prepulse inhibition in the TAAR1 knockout mice. Ross Fiziol Zhurnal Im IM Sechenova 104:1098–1105. https://doi.org/10.1016/j.brainres.2011.04.010

    Article  CAS  Google Scholar 

  12. Light GA, Swerdlow NR (2015) Future clinical uses of neurophysiological biomarkers to predict and monitor treatment response for schizophrenia. Ann N Y Acad Sci 1344:105–119. https://doi.org/10.1111/nyas.12730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Aleksandrov AA, Dmitrieva ES, Volnova AB, Knyazeva VM, Gainetdinov RR, Polyakova NV (2019) Effect of trace amine-associated receptor 1 agonist RO5263397 on sensory gating in mice. Neuroreport 30:1004–1007. https://doi.org/10.1097/wnr.0000000000001313

    Article  CAS  PubMed  Google Scholar 

  14. Aleksandrov AA, Knyazeva VM, Volnova AB, Dmitrieva ES, Polyakova NV, Gainetdinov RR (2019) Trace amine-associated receptor 1 agonist modulates mismatch negativity-like responses in mice. Front Pharmacol 10:470. https://doi.org/10.3389/fphar.2019.00470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Näätänen R, Kujala T, Winkler I (2011) Auditory processing that leads to conscious perception: A unique window to central auditory processing opened by the mismatch negativity and related responses. Psychophysiology 48:4–22. https://doi.org/10.1111/j.1469-8986.2010.01114.x

    Article  PubMed  Google Scholar 

  16. Näätänen R, Kähkönen S (2009) Central auditory dysfunction in schizophrenia as revealed by the mismatch negativity (MMN) and its magnetic equivalent MMNm: A review. Int J Neuropsychopharmacol 12:125–135 https://doi.org/10.1017/S1461145708009322

    Article  PubMed  Google Scholar 

  17. Javitt DC, Doneshka P, Zylberman I, Ritter W, Vaughan HG (1993) Impairment of early cortical processing in schizophrenia: An event-related potential confirmation study. Biol Psychiatry 33:513–519. https://doi.org/10.1016/0006-3223(93)90005-X

    Article  CAS  PubMed  Google Scholar 

  18. Michie PT (2001) What has MMN revealed about the auditory system in schizophrenia? Int J Psychophysiol 42:177–194. https://doi.org/10.1016/S0167-8760(01)00166-0

    Article  CAS  PubMed  Google Scholar 

  19. O’Reilly JA, Conway BA (2021) Classical and controlled auditory mismatch responses to multiple physical deviances in anaesthetised and conscious mice. Eur J Neurosci 53:1839–1854. https://doi.org/10.1111/ejn.15072

    Article  PubMed  Google Scholar 

  20. Ross JM, Hamm JP (2020) Cortical Microcircuit Mechanisms of Mismatch Negativity and Its Underlying Subcomponents. Front Neural Circuits 14:13. https://doi.org/10.3389/fncir.2020.00013

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bradaia A, Trube G, Stalder H, Norcross RD, Ozmen L, Wettstein JG, Pinard A, Buchy D, Gassmann M, Hoener MC, Bettler B (2009) The selective antagonist EPPTB reveals TAAR1-mediated regulatory mechanisms in dopaminergic neurons of the mesolimbic system. Proc Natl Acad Sci 106:20081–20086. https://doi.org/10.1073/pnas.0906522106

    Article  PubMed  PubMed Central  Google Scholar 

  22. Revel FG, Moreau J-L, Gainetdinov RR, Bradaia A, Sotnikova TD, Mory R, Durkin S, Zbinden KG, Norcross R, Meyer CA, Metzler V, Chaboz S, Ozmen L, Trube G, Pouzet B, Bettler B, Caron MG, Wettstein JG, Hoener MC (2011) TAAR1 activation modulates monoaminergic neurotransmission, preventing hyperdopaminergic and hypoglutamatergic activity. Proc Natl Acad Sci 108:8485–8490. https://doi.org/10.1073/pnas.1103029108

    Article  PubMed  PubMed Central  Google Scholar 

  23. Espinoza S, Salahpour A, Masri B, Sotnikova TD, Messa M, Barak LS, Caron MG, Gainetdinov RR (2011) Functional Interaction between Trace Amine-Associated Receptor 1 and Dopamine D2 Receptor. Mol Pharmacol 80:416–425. https://doi.org/10.1124/mol.111.073304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Revel FG, Moreau JL, Pouzet B, Mory R, Bradaia A, Buchy D, Metzler V, Chaboz S, Groebke Zbinden K, Galley G, Norcross RD, Tuerck D, Bruns A, Morairty SR, Kilduff TS, Wallace TL, Risterucci C, Wettstein JG, Hoener MC (2013) A new perspective for schizophrenia: TAAR1 agonists reveal antipsychotic- and antidepressant-like activity, improve cognition and control body weight. Mol Psychiatry 18:543–556. https://doi.org/10.1038/mp.2012.57

    Article  CAS  PubMed  Google Scholar 

  25. Thorn DA, Jing L, Qiu Y, Gancarz-Kausch AM, Galuska CM, Dietz DM, Zhang Y, Li JX (2014) Effects of the trace amine-associated receptor 1 agonist RO5263397 on abuse-related effects of cocaine in rats. Neuropsychopharmacology 39:2309–2316. https://doi.org/10.1038/npp.2014.91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cotter R, Pei Y, Mus L, Harmeier A, Gainetdinov RR, Hoener MC, Canales JJ (2015) The trace amine-associated receptor 1 modulates methamphetamine’s neurochemical and behavioral effects. Front Neurosci 9:39. https://doi.org/10.3389/fnins.2015.00039

    Article  PubMed  PubMed Central  Google Scholar 

  27. Liu JF, Seaman R, Siemian JN, Bhimani R, Johnson B, Zhang Y, Zhu Q, Hoener MC, Park J, Dietz DM, Li JX (2018) Role of trace amine-associated receptor 1 in nicotine’s behavioral and neurochemical effects. Neuropsychopharmacology 43:2435–2444. https://doi.org/10.1038/s41386-018-0017-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dedic N, Dworak H, Zeni C, Rutigliano G, Howes OD (2021) Therapeutic Potential of TAAR1 Agonists in Schizophrenia: Evidence from Preclinical Models and Clinical Studies. Int J Mol Sci 22:13185. https://doi.org/10.3390/ijms222413185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Adler LE, Olincy A, Waldo M, Harris JG, Griffith J, Stevens K, Flach K, Nagamoto H, Bickford P, Leonard S, Freedman R (1998) Schizophrenia, sensory gating, and nicotinic receptors. Schizophr Bull 24:189–202

    Article  CAS  Google Scholar 

  30. Duque D, Malmierca MS, Caspary DM (2014) Modulation of stimulus-specific adaptation by GABAA receptor activation or blockade in the medial geniculate body of the anaesthetized rat. J Physiol 592:729–743. https://doi.org/10.1113/jphysiol.2013.261941

    Article  CAS  PubMed  Google Scholar 

  31. Nelken I (2014) Stimulus-specific adaptation and deviance detection in the auditory system: experiments and models. Biol Cybern 108:655–663. https://doi.org/10.1007/s00422-014-0585-7

    Article  PubMed  Google Scholar 

  32. Natan RG, Briguglio JJ, Mwilambwe-Tshilobo L, Jones SI, Aizenberg M, Goldberg EM, Geffen MN (2015) Complementary control of sensory adaptation by two types of cortical interneurons. Elife 4:e09868. https://doi.org/10.7554/eLife.09868

    Article  PubMed  PubMed Central  Google Scholar 

  33. Malmierca MS, Anderson LA, Antunes FM (2015) The cortical modulation of stimulus-specific adaptation in the auditory midbrain and thalamus: A potential neuronal correlate for predictive coding. Front Syst Neurosci 9:19. https://doi.org/10.3389/fnsys.2015.00019

    Article  PubMed  PubMed Central  Google Scholar 

  34. Leo D, Mus L, Espinoza S, Hoener MC, Sotnikova TD, Gainetdinov RR (2014) Taar1-mediated modulation of presynaptic dopaminergic neurotransmission: Role of D2 dopamine autoreceptors. Neuropharmacology 81:283–291. https://doi.org/10.1016/j.neuropharm.2014.02.007

    Article  CAS  PubMed  Google Scholar 

  35. Kähkönen S, Ahveninen J, Jääskeläinen IP, Kaakkola S, Näätänen R, Huttunen J, Pekkonen E (2001) Effects of haloperidol on selective attention: A combined whole-head MEG and high-resolution EEG study. Neuropsychopharmacology 25:498–504. https://doi.org/10.1016/S0893-133X(01)00255-X

    Article  PubMed  Google Scholar 

  36. Valdés-Baizabal C, Carbajal GV, Pérez-González D, Malmierca MS (2020) Dopamine modulates subcortical responses to surprising sounds. PLoS Biol 18:e3000744. https://doi.org/10.1371/journal.pbio.3000744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ehlers CL, Wall TL, Chaplin RI (1991) Long latency event-related potentials in rats: Effects of dopaminergic and serotonergic depletions. Pharmacol Biochem Behav 38:789–793. https://doi.org/10.1016/0091-3057(91)90243-U

    Article  CAS  PubMed  Google Scholar 

  38. Ahveninen J, Kähkönen S, Pennanen S, Liesivuori J, Ilmoniemi RJ, Jääskeläinen IP (2002) Tryptophan depletion effects on EEG and MEG responses suggest serotonergic modulation of auditory involuntary attention in humans. Neuroimage 16:1052–1061. https://doi.org/10.1006/nimg.2002.1142

    Article  PubMed  Google Scholar 

  39. Kähkönen S, Mäkinen V, Jääskeläinen IP, Pennanen S, Liesivuori J, Ahveninen J (2005) Serotonergic modulation of mismatch negativity. Psychiatry Res—Neuroimaging 138:61–74. https://doi.org/10.1016/j.pscychresns.2004.09.006

    Article  CAS  Google Scholar 

  40. Pan W, Lyu K, Zhang H, Li C, Chen P, Ying M, Chen F, Tang J (2020) Attenuation of auditory mismatch negativity in serotonin transporter knockout mice with anxiety-related behaviors. Behav Brain Res 379:112387. https://doi.org/10.1016/j.bbr.2019.11238741

    Article  CAS  PubMed  Google Scholar 

  41. Shen HW, Hagino Y, Kobayashi K, Shinohara-Tanaka K, Ikeda K, Yamamoto H, Yamamoto T, Lesch KP, Murphy DL, Hall FS, Uhl GR, Sora I (2004) Regional differences in extracellular dopamine and serotonin assessed by in vivo microdialysis in mice lacking dopamine and/or serotonin transporters. Neuropsychopharmacology 29: 1790–1799. https://doi.org/10.1038/sj.npp.1300476

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 22-25-00006.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and experimental design (A.A.A., V.M.K.); data collection (E.S.D., N.V.P., Yu.A.S., L.N.S.); data processing (V.M.K., A.Yu.A.); writing and editing a manuscript (V.M.K., A.A.A., E.S.D.).

Corresponding author

Correspondence to V. M. Knyazeva.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have neither evident not potential conflict of interest associated with the publication of this article.

Additional information

Translated by A. Polyanovsky

Russian Text © The Author(s), 2022, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2022, Vol. 58, No. 3, pp. 232–239https://doi.org/10.31857/S0044452922030044.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knyazeva, V.M., Dmitrieva, E.S., Polyakova, N.V. et al. Stimulus Specific Adaptation Is Affected in Trace Amine-Associated Receptor 1 (TAAR1) Knockout Mice. J Evol Biochem Phys 58, 692–699 (2022). https://doi.org/10.1134/S0022093022030061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093022030061

Keywords:

Navigation