Skip to main content
Log in

Cell Therapy as a Way to Correct Impaired Neurogenesis in the Adult Brain in a Model of Alzheimer’s Disease

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

This work is based on the hypothesis of an impairment in neurogenesis during aging, which may be one of the causes of neurodegenerative diseases, including Alzheimer’s disease (AD). Uncompensated neuronal death leads to memory loss. There is an opinion that activation of endogenous neurogenesis or cell replacement therapy may be an effective treatment of AD. We used mesenchymal stromal cells (MSCs) isolated from the human umbilical cord Wharton’s jelly, which have a number of significant advantages over MSCs from other tissues. Human MSCs (hMSCs) were transplanted into the frontal cortex of 8–9-month-old female 5XFAD transgenic (Tg) mice, a model of the hereditary AD. To evaluate the effects of such transplantation, spatial memory was analyzed in parallel with morphofunctional characteristics of adult neurogenic niches—the subgranular zone (SGZ) of the hippocampal dentate gyrus and the subventricular zone (SVZ) of the lateral ventricles of the brain, as well as the brain areas responsible for learning and memory—the temporal cortex and CA1/CA3 fields of the hippocampus, using immunohistochemistry for markers of cell proliferation (BrdU) and neuronal differentiation (nestin, doublecortin, β-3 tubulin, NeuN, MAP2, GFAP). 5XFAD Tg mice were characterized by an impaired SGZ/SVZ ratio of proliferative activity and a reduced neuronal density in the cortex and hippocampus. The positive effect of hMSC treatment on memory and neuronal as well as glial density in the temporal cortex and hippocampal regions manifested itself two months after transplantation. By that time, hMSCs were detected in the brain of Tg mice only. Both in Tg and non-transgenic (nTg) mice treated with hMSCs, the density of BrdU+ cells was increased in the adult neurogenic niches, however only in the hippocampus of Tg mice, there was a reduced number of amyloid plaques and apoptotic cells, as well as an increased density of synaptophysin-immunopositive (SyP+) cells. Thus, the positive effect of hMSCs was manifested in the hippocampus of Tg mice, the structure remote from the frontal cortex, i.e. the transplantation site. Overall, our data indicate a paracrine effect of hMSCs, as well as the validity of the chimeric model and the promising use of MSC therapy in the treatment of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Caselli RJ, Beach TG, Knopman DS, Graff-Radford NR (2017) Alzheimer Disease: Scientific Breakthroughs and Translational Challenges. Mayo Clin Proc 92(6):978-994. https://doi.org/10.1016/j.mayocp.2017.02.011

    Article  PubMed  Google Scholar 

  2. Tiwari S, Atluri V, Kaushik A, Yndart A, Nair M (2019) Alzheimer’s disease: pathogenesis, diagnostics, and therapeutics. Int J Nanomedicine 19(14):5541-5554. https://doi.org/10.2147/IJN.S200490

    Article  Google Scholar 

  3. Loera-Valencia R, Piras A, Ismail MAM, Manchanda S, Eyjolfsdottir H, Saido TC. Johansson J, Eriksdotter M, Winblad B, Nilsson P (2018) Targeting Alzheimer’s disease with gene and cell therapies. J Int Med 284(1):2-36. https://doi.org/10.1111/joim.12759

    Article  CAS  Google Scholar 

  4. Sadigh-Eteghad S, Sabermarouf B, Majdi A, Taleb M, Farhoudi M, Mahmoudi Jl (2015) Amyloid-beta: a crucial factor in Alzheimer’s disease. Med Princ Pract 24(1):1–10. https://doi.org/10.1159/000369101

    Article  PubMed  Google Scholar 

  5. Lane CA, Hardy J, Schott JM (2018) Alzheimer’s disease. Eur J Neurol 25(1):59–70. https://doi.org/10.1111/ene.13439

    Article  CAS  PubMed  Google Scholar 

  6. Winner B, Kohl Z, Gage FH (2011) Neurodegenerative disease and adult neurogenesis. Eur J Neurosci. 33(6):1139–1151. https://doi.org/10.1111/j.1460-9568.2011.07613.x

    Article  PubMed  Google Scholar 

  7. Liang X, Ding Y, Zhang Y, Tse HF, Lian Q (2014) Paracrine mechanisms of mesenchymal stem cell-based therapy: current status and perspectives. Cell Transplant 23(9):1045–1059. https://doi.org/10.3727/096368913x667709

    Article  PubMed  Google Scholar 

  8. Vaes JEG, Vink MA, de Theije CGM, Hoebeek FE, Benders MJNL, Nijboer CHA (2019) The Potential of Stem Cell Therapy to Repair White Matter Injury in Preterm Infants: Lessons Learned From Experimental Models. Front Physiol 10: 540. https://doi.org/10.3389/fphys.2019.00540

    Article  PubMed  PubMed Central  Google Scholar 

  9. Noureddini M, Bagheri-Mohammadi S (2021) Adult Hippocampal Neurogenesis and Alzheimer’s Disease: Novel Application of Mesenchymal Stem Cells and their Role in Hippocampal Neurogenesis. Int J Mol Cell Med 10(1):1–10. https://doi.org/10.22088/IJMCM.BUMS.10.1.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vitek MP, Araujo JA, Fossel M, Greenberg BD, Howel GR, Sukoff Rizzo SJ, Seyfried NT, Tenner AJ, Territo PR, Windisch M, Bain LJ, Ross AR, Carrillo MC, Lamb BT, Edelmayer RM (2021) Translational animal models for Alzheimer’s disease: An Alzheimer’s Association Business Consortium Think Tank. Alzheimers Dement (NY) 6(1):e12114. https://doi.org/10.1002/trc2.12114

  11. Paton MCB, McDonald CA, Allison BJ, Fahey MC, Jenkin G, Miller SL (2017) Perinatal brain injury as a consequence of preterm birth and intrauterine inflammation: designing targeted stem cell therapies. Front Neurosci 11:200. https://doi.org/10.3389/fnins.2017.00200

    Article  PubMed  PubMed Central  Google Scholar 

  12. De Miguel MP, Fuentes-Julian S, Blazquez-Martinez A, Pascual CY, Aller MA, Arias J, Arnalich-Montiel F (2012) Immunosuppressive properties of mesenchymal stem cells: advances and applications. Curr Mol Med 12(5):574–591. https://doi.org/10.2174/156652412800619950

    Article  PubMed  Google Scholar 

  13. Jacobs SA, Roobrouck VD, Verfaillie CM, Van Gool SW (2013) Immunological characteristics of human mesenchymal stem cells and multipotent adult progenitor cells. Immunol Cell Biol 91(1):32–39. https://doi.org/10.1038/icb.2012.64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kobolak J, Dinnyes A, Memic A, Khademhosseini A, Mobasheri A (2016) Mesenchymal stem cells: identification, phenotypic characterization, biological properties and potential for regenerative medicine through biomaterial micro-engineering of their niche. Methods 99:62–68. https://doi.org/10.1016/j.ymeth.2015.09.016

    Article  CAS  PubMed  Google Scholar 

  15. Volkman R, Offen D (2017) Concise review: mesenchymal stem cells in neurodegenerative diseases. Stem Cells 35:1867–1880. https://doi.org/10.1002/stem.2651

    Article  PubMed  Google Scholar 

  16. Frausin S, Viventi S, Verga Falzacappa L, Quattromani MJ, Leanza G, Tommasini A, Valencic E (2015) Wharton’s jelly derived mesenchymal stromal cells: Biological properties, induction of neuronal phenotype and current applications in neurodegeneration research. Acta Histochem 117(4–5):329–338. https://doi.org/10.1016/j.acthis.2015.02.005

    Article  CAS  PubMed  Google Scholar 

  17. Donders R, Bogie JFJ, Ravanidis S, Gervois P, Vanheusden M, Marée R, Schrynemackers M, Smeets HJM, Pinxteren J, Gijbels K, Walbers S, Mays RW, Deans R, Van Den Bosch L, Stinissen P, Lambrichts I, Gyselaers W, Hellings N (2018) Human Wharton’s Jelly-Derived Stem Cells Display a Distinct Immunomodulatory and Proregenerative Transcriptional Signature Compared to Bone Marrow-Derived Stem Cells. Stem Cells 27(2):65–84. https://doi.org/10.1089/scd.2017.0029

    Article  CAS  Google Scholar 

  18. Shi J, Zhao YC, Niu ZF, Fan HJ, Hou SK, Guo XQ, Sang L, Lv Q (2021) Mesenchymal stem cell-derived small extracellular vesicles in the treatment of human diseases: progress and prospect. World J Stem Cells 13(1):49–63. https://doi.org/10.4252/wjsc.v13.i1.49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang X, Thomsen P (2021) Mesenchymal stem cell-derived small extracellular vesicles and bone regeneration. Basic Clin Pharmacol Toxicol 128:18–36. https://doi.org/10.1111/bcpt.13478

    Article  CAS  PubMed  Google Scholar 

  20. Zhdanova DY, Poltavtseva RA, Svirshchevskaya EV, Bobkova NV (2021) Effect of Intranasal Administration of Multipotent Mesenchymal Stromal Cell Exosomes on Memory of Mice in Alzheimer’s Disease Model. Bull Exp Biol Med 170(4): 575–582. https://doi.org/10.1007/s10517-021-05109-3

    Article  CAS  PubMed  Google Scholar 

  21. Venugopal CKS, Rai KS, Pinnelli VB, Kutty BM, Dhanushkodi A (2018) Neuroprotection by Human Dental Pulp Mesenchymal Stem Cells: From Billions to Nano. Curr Gene Ther 18(5):307–323. https://doi.org/10.2174/1566523218666180913152615

    Article  CAS  PubMed  Google Scholar 

  22. Mead B, Logan A, Berry M, Leadbeater W, Scheven BA (2014) Paracrine-mediated neuroprotection and neuritogenesis of axotomised retinal ganglion cells by human dental pulp stem cells: comparison with human bone marrow and adipose-derived mesenchymal stem cells. PLoS One 9(10):e109305. https://doi.org/10.1371/journal.pone.0109305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Labrador-Velandia S, Alonso-Alonso ML, Di Lauro S, García-Gutierrez MT, Srivastava GK, Pastor JC, Fernandez-Bueno I (2019) Mesenchymal stem cells provide paracrine neuroprotective resources that delay degeneration of co-cultured organotypic neuroretinal cultures. Exp Eye Res 185:107671. https://doi.org/10.1016/j.exer.2019.05.011

    Article  CAS  PubMed  Google Scholar 

  24. Peng C, Li Y, Lu L, Zhu J, Li H, Hu J (2019) Efficient One-Step Induction of Human Umbilical Cord-Derived Mesenchymal Stem Cells (UC-MSCs) Produces MSC-Derived Neurospheres (MSC-NS) with Unique Transcriptional Profile and Enhanced Neurogenic and Angiogenic Secretomes. Stem Cells Int 2019:9208173. https://doi.org/10.1155/2019/9208173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee HJ, Lee JK, Lee H, Shin J-W, Carter JE, Sakamoto T, Kyung Jin H, Bae J-s (2010) The therapeutic potential of human umbilical cord blood-derived mesenchymal stem cells in Alzheimer’s disease. Neurosci Lett 481(1):30–35. https://doi.org/10.1016/j.neulet.2010.06.045

    Article  CAS  PubMed  Google Scholar 

  26. Park H-J, Shin JY, Lee BR, Kim HO, Lee PH (2012) Mesenchymal stem cells augment neurogenesis in the subventricular zone and enhance differentiation of neural precursor cells into dopaminergic neurons in the Substantia Nigra of a Parkinsonian model. Cell Transplant 21:1629–1640. https://doi.org/10.3727/096368912X640556

    Article  PubMed  Google Scholar 

  27. Kim J-Y, Kim DH, Kim JH, Kim J-Y, Lee D, Jeon HB, Kwon S-J, Kim SM, Yoo YJ, Lee EH, Choi SJ, Seo SW, Lee JI, Na DL, Yang YS, Oh W, Chang JW (2012) Soluble intracellular adhesion molecule-1 secreted by human umbilical cord blood-derived mesenchymal stem cell reduces amyloid-β plaques. Cell Death Differ 19:680–691. https://doi.org/10.1038/cdd.2011.140

    Article  CAS  PubMed  Google Scholar 

  28. Shin JY, Park HJ, Kim HN, Oh SH, Bae J-S, Ha H-J, Lee PH (2014) Mesenchymal stem cells enhance autophagy and increase β-amyloid clearance in Alzheimer disease models. Autophagy 10:32–44. https://doi.org/10.4161/auto.26508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Oh SH, Kim HN, Park H-J, Shin JY, Lee PH (2015) Mesenchymal stem cells increase hippocampal neurogenesis and neuronal differentiation by enhancing the Wnt signaling pathway in an Alzheimer’s disease model. Cell Transpl 24:1097–1109. https://doi.org/10.3727/096368914X679237

    Article  Google Scholar 

  30. Kalinina YA, Gilerovich EG, Korzhevskij DE (2019) Astrocytes and their participation in the mechanisms of therapeutic action of multipotent mesenchymal stromal cells in ischemic brain damage. Genes and Cells 14 (1): 33–40. https://doi.org/10.23868/201903004

    Article  Google Scholar 

  31. Bobkova NV, Poltavtseva RA, Samokhin AN, Sukhikh GT (2013) Therapeutic effect of mesenchymal multipotent stromal cells on memory in animals with Alzheimer-type neurodegeneration. Bull Exp Biol Med 156(1):119–121. https://doi.org/10.1007/s10517-013-2293-z

    Article  CAS  PubMed  Google Scholar 

  32. Poltavtseva RA, Samokhin AN, Bobkova NV, Alexandrova MA, Sukhikh GT (2020) Effect of Transplantation of Neural Stem and Progenitor Cells on Memory in Animals with Alzheimer’s Type Neurodegeneration. Bull Exp Biol Med 168(4):589–596. https://doi.org/10.1007/s10517-020-04758-0

    Article  CAS  PubMed  Google Scholar 

  33. Arsent’yeva YEV, Polyakova DI (2021) A modern view of the use of cell technologies to stimulate reparative neurogenesis. Scientific Review. Med Sci 2: 16–24. (In Russ).

    Google Scholar 

  34. Franklin KBJ, Paxinos G (2008) The mouse brain in stereotaxic coordinates. Elsevier, Amsterdam.

    Google Scholar 

  35. Nemecek S, Subrtova D (1995) Cerebrospinal fluid dissemination of fetal neural isografts in brain of adult rats. Sb Ved Pr Lek Fak Karlovy Univer Hradci Kralove 38(1):5–9.

    CAS  Google Scholar 

  36. Werner M, Von Wasielewski R, Komminoth P (1996) Antigen retrival, signal amplification and intensification in immunohistochemistry. Histochem Cell Biol 105(4):253–260. https://doi.org/10.1007/BF01463928

    Article  CAS  PubMed  Google Scholar 

  37. Zhu M, Li W, Guo J, Lu Y, Dong X, Lin B, Chen Y, Zhang X, Li M (2016) Alpha fetoprotein antagonises benzyl isothiocyanate inhibition of the malignant behaviors of hepatocellular carcinoma cells. Oncotarget 7(46):75749–75762. https://doi.org/10.18632/oncotarget.12407

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wang W, Zhu M, Xu Z, Li W, Dong X, Chen Y, Lin B, Li M (2019) Ropivacaine promotes apoptosis of hepatocellular carcinoma cells through damaging mitochondria and activating caspase-3 activity. Biol Res 52(1):36. https://doi.org/10.1186/s40659-019-0242-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yi S, Liu G, Wu Y, Liang Q, Li L (2020) Baicalein suppresses the growth of the human thyroid cancer cells by inducing mitotic catastrophe, apoptosis and autophagy via NF-kB signalling pathway. J BUON 25(1):389–394.

    PubMed  Google Scholar 

  40. Du WJ, Chi Y, Yang ZX, Li ZJ, Cui JJ, Song BQ, Li X, Yang SG, Han ZB, Han ZC (2016) Heterogeneity of proangiogenic features in mesenchymal stem cells derived from bone marrow, adipose tissue, umbilical cord, and placenta. Stem Cell Res & Therapy 7(1):1–1. https://doi.org/10.1186/s13287-016-0418-9

    Article  CAS  Google Scholar 

  41. Borner C (2003) The Bcl2 protein family: Sensors and checkpoints for life-or-death decisions. Mol Immunol 39:615–647. https://doi.org/10.1016/s0161-5890(02)00252-3

    Article  CAS  PubMed  Google Scholar 

  42. Lewandowska U, Szewczyk K, Owczarek K, Hrabec Z, Podsędek A, Koziołkiewicz M, Hrabec E (2013) Flavanols from Evening Primrose (Oenothera paradoxa) Defatted Seeds Inhibit Prostate Cells Invasiveness and Cause Changes in Bcl-2/Bax mRNA Ratio. J Agricult and Food Chem 61(12):2987–2998. https://doi.org/10.1021/jf304269x

    Article  CAS  Google Scholar 

  43. Oakley H, Cole SL, Logan S, Maus E, Shao P, Craft J, Vassar R (2006) Intraneuronal β-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J Neurosci 26 (40):10129–10140. https://doi.org/10.1523/JNEUROSCI.1202-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bobkova NV, Lyabin DN, Medvinskaya NI, Samokhin AN, Nekrasov PV, Nesterova IV, Ovchinnikov LP (2015) The Y-box binding protein 1 suppresses Alzheimer’s disease progression in two animal models. PLoS One 10 (9):e0138867. https://doi.org/10.1371/journal.pone.0138867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lazarov O, Marr RA (2010) Neurogenesis and Alzheimer’s disease: at the crossroads. Exp Neurol 223(2):267–281. https://doi.org/10.1016/j.expneurol.2009.08.009

    Article  CAS  PubMed  Google Scholar 

  46. Bonds JA, Kuttner-Hirshler Y, Bartolotti N, Tobin MK, Pizzi M, Marr R, Lazarov O (2015) Presenilin-1 dependent neurogenesis regulates hippocampal learning and memory. PLoS One 10(6):e0131266. https://doi.org/10.1371/journal.pone.0131266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Baum LW (2005) Sex, hormones, and Alzheimer’s disease. J Gerontol Ser A: Biol Sci and Med Sci 60(6):736–743. https://doi.org/10.1093/gerona/60.6.736

    Article  Google Scholar 

  48. Webber KM, Casadesus G, Perry G, Atwood CS, Bowen R, Smith MA (2005) Gender differences in Alzheimer disease: the role of luteinizing hormone in disease pathogenesis. Alzheimer Disease & Associated Disorders 19(2):95–99. https://doi.org/10.1097/01.wad.0000165512.90864.3f

    Article  CAS  Google Scholar 

  49. Mielke MM, Vemuri P, Rocca WA (2014) Clinical epidemiology of Alzheimer’s disease: assessing sex and gender differences. Clin Epidemiol 6:37–48. https://doi.org/10.2147/CLEP.S37929

    Article  PubMed  PubMed Central  Google Scholar 

  50. Rodriguez JJ, Jones VC, Tabuchi M, Allan SM, Knight EM, LaFerla FM, Oddo S, Verkhratsky A (2008) Impaired adult neurogenesis in the dentate gyrus of a triple transgenic mouse model of Alzheimer’s disease. PloS one 13;3(8):e2935. https://doi.org/10.1371/journal.pone.0002935

    Article  CAS  Google Scholar 

  51. Hall AM, Roberson ED (2012) Mouse models of Alzheimer’s disease. Brain Res Bull 88(1):3–12. https://doi.org/10.1016/j.brainresbull.2011.11.017

    Article  CAS  PubMed  Google Scholar 

  52. Vehmas AK, Kawas CH, Stewart WF, Troncoso JC (2003) Immune reactive cells in senile plaques and cognitive decline in Alzheimer’s disease. Neurobiol Aging 24(2):321–331. https://doi.org/10.1016/S0197-4580(02)00090-8

    Article  PubMed  Google Scholar 

  53. Itagaki S, McGeer PL, Akiyama H, Zhu S, Selkoe D (1989) Relationship of microglia and astrocytes to amyloid deposits of Alzheimer disease. J Neuroimmunol 24(3):173–182. https://doi.org/10.1016/0165-5728(89)90115-X

    Article  CAS  PubMed  Google Scholar 

  54. Hartlage-Rübsamen M, Zeitschel U, Apelt J, Gärtner U, Franke H, Stahl T, Günther A, Schliebs R, Penkowa M, Bigl V, Roßner S (2003) Astrocytic expression of the Alzheimer’s disease β-secretase (BACE1) is stimulus-dependent. Glia 41(2):169–179. https://doi.org/10.1002/glia.10178

    Article  PubMed  Google Scholar 

  55. Koistinaho M, Lin S, Wu XI, Esterman M, Koger D, Hanson J, Higgs R, Liu F, Malkani S, Bales KR, Paul SM (2004) Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-β peptides. Nature Med 10(7):719–726. https://doi.org/10.1038/nm1058

    Article  CAS  PubMed  Google Scholar 

  56. von Bartheld CS, Bahney J, Herculano-Houzel S (2016) The search for true numbers of neurons and glial cells in the human brain: a review of 150 years of cell counting. J Compar Neurol 524(18):3865–3895. https://doi.org/10.1002/cne.24040

    Article  Google Scholar 

  57. Douaud G, Groves AR, Tamnes CK, Westlye LT, Duff EP, Engvig A, Walhovd KB, James A, Gass A, Monsch AU, Matthews PM (2014) A common brain network links development, aging, and vulnerability to disease. Proc Natl Acad Sci USA 111(49):17648–17653. https://doi.org/10.1073/pnas.1410378111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Evgen’ev M, Bobkova N, Krasnov G, Garbuz D, Funikov S, Kudryavtseva A, Kulikov A, Samokhin A, Maltsev A, Nesterova I (2019) The Effect of Human HSP70 Administration on a Mouse Model of Alzheimer’s Disease Strongly Depends on Transgenicity and Age. J Alzheimers Dis 67(4):1391–1404. https://doi.org/10.3233/JAD-180987

    Article  CAS  PubMed  Google Scholar 

  59. Coppé JP, Desprez PY, Krtolica A, Campisi J (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol: Mechanisms of Disease 5:99–118. https://doi.org/10.1146/annurev-pathol-121808-102144

    Article  CAS  Google Scholar 

  60. Li D, Tang J, Xu H, Fan X, Bai Y, Yang L (2008) Decreased hippocampal cell proliferation correlates with increased expression of BMP4 in the APPswe/PS1ΔE9 mouse model of Alzheimer’s disease. Hippocampus 18(7):692–698. https://doi.org/10.1002/hipo.20428

    Article  CAS  PubMed  Google Scholar 

  61. Donovan MH, Yazdani U, Norris RD, Games D, German DC, Eisch AJ (2006) Decreased adult hippocampal neurogenesis in the PDAPP mouse model of Alzheimer’s disease. J Compar Neurol 495(1):70–83. https://doi.org/10.1002/cne.20840

    Article  Google Scholar 

  62. Taniuchi N, Niidome T, Goto Y, Akaike A, Kihara T, Sugimoto H (2007) Decreased proliferation of hippocampal progenitor cells in APPswe/PS1dE9 transgenic mice. Neuroreport 18(17):1801–1805. https://doi.org/10.1097/WNR.0b013e3282f1c9e9

    Article  PubMed  Google Scholar 

  63. Demars M, Hu YS, Gadadhar A, Lazarov O (2010) Impaired neurogenesis is an early event in the etiology of familial Alzheimer’s disease in transgenic mice. J Neurosci Res 88(10):2103–2117. https://doi.org/10.1002/jnr.22387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Boldrini M, Fulmore CA, Tartt AN, Simeon LR, Pavlova I, Poposka V, Rosoklija GB, Stankov A, Arango V, Dwork AJ, Hen R (2018) Human hippocampal neurogenesis persists throughout aging. Cell Stem Cell 22(4):589–599. https://doi.org/10.1016/j.stem.2018.03.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhang R, Cai Y, Xiao R, Zhong H, Li X, Guo L, Xu H, Fan X (2019) Human amniotic epithelial cell transplantation promotes neurogenesis and ameliorates social deficits in BTBR mice. Stem Cell Res & Therapy 10(1):1–3. https://doi.org/10.1186/s13287-019-1267-0

    Article  CAS  Google Scholar 

  66. Shi Q, Chowdhury S, Ma R, Le KX, Hong S, Caldarone BJ, Stevens B, Lemere CA (2017) Complement C3 deficiency protects against neurodegeneration in aged plaque-rich APP/PS1 mice. Sci Translat Med 9(392):aaf6295. https://doi.org/10.1126/scitranslmed.aaf6295

    Article  Google Scholar 

  67. Novoselova EG, Bobkova NV, Sinotova OA, Ogai VB, Glushkova OV, Medvinskaya NI, Samokhin AN (2003) The immune state of bulbectomized mice. Dokl Biol Sci 393:505–507. https://doi.org/10.1023/b:dobs.0000010308.59629.c0

    Article  CAS  PubMed  Google Scholar 

  68. Vercelli A, Mereuta OM, Garbossa D, Muraca G, Mareschi K, Rustichelli D, Ferrero I, Mazzini L, Madon E, Fagioli F (2008) Human mesenchymal stem cell transplantation extends survival, improves motor performance and decreases neuroinflammation in mouse model of amyotrophic lateral sclerosis. Neurobiol Disease 31(3):395–405. https://doi.org/10.1016/j.nbd.2008.05.016

    Article  CAS  Google Scholar 

  69. Björklund A, Lindvall O (2000) Cell replacement therapies for central nervous system disorders. Nature Neurosci 3(6):537–544. https://doi.org/10.1038/75705

    Article  PubMed  Google Scholar 

  70. Aithal AP, Bairy LK, Seetharam RN (2021) Safety and therapeutic potential of human bone marrow-derived mesenchymal stromal cells in regenerative medicine. Stem Cell Investig 8:10. https://doi.org/10.21037/sci-2020-036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ko HR, Ahn SY, Chang YS, Hwang I, Yun T, Sung DK, Sung SI, Park WS, Ahn JY (2018) Human UCB-MSCs treatment upon intraventricular hemorrhage contributes to attenuate hippocampal neuron loss and circuit damage through BDNF-CREB signaling. Stem Cell Res & Therapy 9(1):1–5. https://doi.org/10.1186/s13287-018-1052-5

    Article  CAS  Google Scholar 

  72. Varela-Nallar L, Inestrosa NC (2013) Wnt signaling in the regulation of adult hippocampal neurogenesis. Front Cell Neurosci 7:100. https://doi.org/10.3389/fncel.2013.00100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Xu C, Fu F, Li X, Zhang S (2017) Mesenchymal stem cells maintain the microenvironment of central nervous system by regulating the polarization of macrophages/microglia after traumatic brain injury. Int J Neurosci 127(12):1124–1135. https://doi.org/10.1080/00207454.2017.1325884

    Article  CAS  PubMed  Google Scholar 

  74. Papazian I, Kyrargyri V, Evangelidou M, Voulgari-Kokota A, Probert L (2018) Mesenchymal stem cell protection of neurons against glutamate excitotoxicity involves reduction of NMDA-triggered calcium responses and surface GluR1, and is partly mediated by TNF. Int J Mol Sci 19(3):651. https://doi.org/10.3390/ijms1903065

    Article  PubMed Central  Google Scholar 

  75. Reuss B, Halbach OV (2003) Fibroblast growth factors and their receptors in the central nervous system. Cell Tissue Res 313(2):139–157. https://doi.org/10.1007/s00441-003-0756-7

    Article  CAS  PubMed  Google Scholar 

  76. Isele NB, Lee HS, Landshamer S, Straube A, Padovan CS, Plesnila N, Culmsee C (2007) Bone marrow stromal cells mediate protection through stimulation of PI3-K/Akt and MAPK signaling in neurons. Neurochem Int 50(1):243–250. https://doi.org/10.1016/j.neuint.2006.08.007

    Article  CAS  PubMed  Google Scholar 

  77. Park HJ, Shin JY, Kim HN, Oh SH, Song SK, Lee PH (2015) Mesenchymal stem cells stabilize the blood–brain barrier through regulation of astrocytes. Stem Cell Res & Therapy 6(1):1–2. https://doi.org/10.1186/s13287-015-0180-4

    Article  CAS  Google Scholar 

  78. Park HJ, Lee PH, Bang OY, Lee G, Ahn YH (2008) Mesenchymal stem cells therapy exerts neuroprotection in a progressive animal model of Parkinson’s disease. J Neurochem 107(1):141–151. https://doi.org/10.1111/j.1471-4159.2008.05589.x

    Article  CAS  PubMed  Google Scholar 

  79. Park HJ, Bang G, Lee BR, Kim HO, Lee PH (2011) Neuroprotective effect of human mesenchymal stem cells in an animal model of double toxin induced multiple system atrophy parkinsonism. Cell Transplant 20:827–835. https://doi.org/10.3727/096368910X540630

    Article  PubMed  Google Scholar 

  80. Poltavtsev AM, Poltavtseva RA, Yushina MN, Volgina NE, Svirshchevskaya EV (2017) Cytokine Production in Mixed Cultures of Mesenchymal Stromal Cells from Wharton’s Jelly and Peripheral Blood Lymphocytes. Bull Exp Biol Med 163(1):169–175. https://doi.org/10.1007/s10517-017-3759-1

    Article  CAS  PubMed  Google Scholar 

  81. Poltavtseva RA, Bobkova NV, Zhdanova DYU, Svirshchevskaya EV, Sukhikh GT (2021) Alzheimer’s type neurodegeneration. possible correction of memory impairment with intravenous injection of exosomes. Biol Membr 38(5): 374–387. https://doi.org/10.31857/S0233475521050066

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to P.V. Nekrasov for technical assistance in conducting experiments. The study was performed on the equipment of the Sector of Optical Microscopy and Spectrophotometry at the Pushchino Research Center for Biological Studies, Russian Academy of Sciences.

Funding

This work was supported by the Russian Science Foundation (project No. 18-15-00392).

Author information

Authors and Affiliations

Authors

Contributions

The idea and experimental design (B.N.V. and P.R.A.); data collection (C.A.V., Z.D.Y., K.V.I., M.N.I., P.R.A.) and processing (B.N.V., K.V.I., Z.D.Y., C.A.V., P.R.A.); cell isolation and culturing (P.R.A.), writing and editing a manuscript (B.N.V., Z.D.Y., K.V.I., P.R.A).

Corresponding author

Correspondence to R. A. Poltavtseva.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest, both evident and potential, that would be associated with the publication of this article.

Additional information

Translated by A. Polyanovsky

Russian Text © The Author(s), 2022, published in Rossiiskii Fiziologicheskii Zhurnal imeni I.M. Sechenova, 2022, Vol. 108, No. 1, pp. 59–84https://doi.org/10.31857/S0869813922010046.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaplygina, A.V., Zhdanova, D.Y., Kovalev, V.I. et al. Cell Therapy as a Way to Correct Impaired Neurogenesis in the Adult Brain in a Model of Alzheimer’s Disease. J Evol Biochem Phys 58, 117–137 (2022). https://doi.org/10.1134/S0022093022010112

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093022010112

Keywords:

Navigation