Skip to main content
Log in

In silico analysis of paraoxon binding by human and bovine serum albumin

  • Comparative and Ontogenic Biochemistry
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Albumin is known to be able to cleave ether bonds in organophosphates (OPs). Amino acids responsible for esterase and pseudo-esterase albumin activity towards OPs are not yet finally identified. Presumably, Sudlow’s site I with the Tyr150 residue shows a “true” esterase activity, while Sudlow’s II site with the Tyr411 residue—a pseudo-esterase one. Both human (HSA) and bovine (BSA) serum albumins were used in in vitro studies of albumin (pseudo)esterase activity towards OPs. There is a body of evidence that the efficiency of interaction of different xenobiotics differs for these two proteins. Using paraoxon as an example, the aim of this study was to conduct an in silico study of the OP interaction with the previously identified potential sites of HSA and BSA (pseudo)esterase activity, to estimate the possibility of enzymatic reactions at these sites, to comparatively analyze these proteins from the evolutionary viewpoint, and to assess the possibility of extrapolating the experimental data obtained on BSA to a human organism. Molecular docking of paraoxon into the sites of HSA and BSA potential (pseudo)esterase activity has been performed. Conformational changes occurring in the resultant complexes with time have been studied by molecular dynamics simulation. It has been shown that Sudlow’s site II is less liable to evolutionary changes. Binding of modulators at other sites is not required for productive sorption of OPs and the phosphorylation reaction at Sudlow’s site II. It has been concluded that simi lar results for HSA and BSA could be expected for the irreversible binding of OPs at Sudlow’s site II. Since Sudlow’s site I is less conservative, diff erent binding efficiency could be expected for rigid molecules or optically active compounds. Both for HSA and BSA, productive binding of OPs at Sudlow’s site I is possible only after changes in the albumin molecule structure induced by binding of modulators at other sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fasano, M., Curry, S., Terreno, E., Galliano, M., Fanali, G., Narciso, P., Notari, S., and Ascenzi, P., The extraordinary ligand binding properties of human serum albumin, IUBMB Life, 2005, vol. 57, pp. 787–796.

    Article  CAS  PubMed  Google Scholar 

  2. Goncharov, N.V., Belinskaya, D.A., Razygraev, A.V., and Ukolov, A.I., On the enzymatic activity of albumin, Bioorg. Khim., 2015, vol. 41, pp. 131–144.

    CAS  PubMed  Google Scholar 

  3. Black, R.M., Harrison, J.M., and Read, R.W., The interaction of sarin and soman with plasma proteins: the identification of a novel phosphonylation site, Arch. Toxicol., 1999, vol. 73, pp. 123–126.

    Article  CAS  PubMed  Google Scholar 

  4. Williams, N.H., Harrison, J.M., Read, R.W., and Black, R.M., Phosphylated tyrosine in albumin as a biomarker of exposure to organophosphorus nerve agents, Arch. Toxicol., 2007, vol. 81, pp. 627–639.

    Article  CAS  PubMed  Google Scholar 

  5. John, H., Breyer, F., Thumfart, J.O., Hchstetter, H., and Thiermann, H., Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for detection and identification of albumin phosphylation by organophosphorus pesticides and G- and V-type nerve agents, Anal. Bioanal. Chem., 2010, vol. 398, pp. 2677–2691.

    Article  CAS  PubMed  Google Scholar 

  6. Sogorb, M.A. and Vilanova, E., Enzymes involved in the detoxification of organophosphorus, carbamate and pyrethroid insecticides through hydrolysis, Toxicol. Lett., 2002, vol. 128, pp. 215–228.

    Article  CAS  PubMed  Google Scholar 

  7. Sogorb, M.A., García-Argüelles, S., Carrera, V., and Vilanova, E., Serum albumin is as efficient as paraxonase in the detoxication of paraoxon at toxicologically relevant concentrations, Chem. Res. Toxicol., 2008, vol. 21, pp. 1524–1529.

    Article  CAS  PubMed  Google Scholar 

  8. Sogorb, M.A. and Vilanova, E., Serum albumins and detoxication of anti-cholinesterase agents, Chem. Biol. Interact., 2010, vol. 187, pp. 325–329.

    Article  CAS  PubMed  Google Scholar 

  9. Lockridge, O., Xue, W., Gaydess, A., Grigoryan, H., Ding, S.J., Schopfer, L.M., Hinrichs, S.H., and Masson, P., Pseudo-esterase activity of human albumin: slow turnover on tyrosine 411 and stable acetylation of 82 residues including 59 lysines, J. Biol. Chem., 2008, vol. 283, pp. 22582–22590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li, B., Nachon, F., Froment, M.T., Verdier, L., Debouzy, J.C., Brasme, B., Gillon, E.M., Schopfer, L.M., Lockridge, O., and Masson, P., Binding and hydrolysis of soman by human serum albumin, Chem. Res. Toxicol., 2008, vol. 21, pp. 421–431.

    Article  CAS  PubMed  Google Scholar 

  11. Belinskaya, D.A., Shmurak, V.I., Prokofyeva, D.S., and Goncharov, N.V., Soman–albumin binding as studied by molecular modeling, Toksikol. Vestn., 2012, no. 6, pp. 13–19.

    Google Scholar 

  12. Belinskaya, D.A., Shmurak, V.I., Prokofyeva, D.S., and Goncharov, N.V., Serum albumin: a search for new sites of interaction with organophosphates as exemplified by soman, Bioorg. Khim., 2014, vol. 40, pp. 541–549.

    Google Scholar 

  13. Read, R.W., Riches, J.R., Stevens, J.A., Stubbs, S.J., and Black, R.M., Biomarkers of organophosphorus nerve agent exposure: comparison of phosphylated butyrylcholinesterase and phosphylated albumin after oxime therapy, Arch. Toxicol., 2010, vol. 84, pp. 25–36.

    Article  CAS  PubMed  Google Scholar 

  14. Sogorb, M.A., Alvarez-Escalante, C., Carrera, V., and Vilanova, E., An in vitro approach for demonstrating the critical role of serum albumin in the detoxication of the carbamate carbaryl at in vivo toxicologically relevant concentrations, Arch. Toxicol., 2007, vol. 81, pp. 113–119.

    Article  CAS  PubMed  Google Scholar 

  15. Xu, C., Zhang, A., and Liu, W., Binding of phenthoate to bovine serum albumin and reduced inhibition on acetylcholinesterase, Pest. Biochem. Physiol., 2007, vol. 88, pp. 176–180.

    Article  CAS  Google Scholar 

  16. Huang, B.X., Kim, H.Y., and Dass, C., Probing three-dimensional structure of bovine serum albumin by chemical cross-linking and mass spectrometry, J. Am. Soc. Mass Spectrom., 2004, vol. 15, pp. 1237–1247.

    Article  CAS  PubMed  Google Scholar 

  17. Kohita, H., Matsushita, Y., and Moriguchi, I., Binding of carprofen to human and bovine serum albumins, Chem. Pharm. Bull. (Tokyo), 1994, vol. 42, pp. 937–940.

    Article  CAS  Google Scholar 

  18. Antoni, G., Casagli, M.C., Bigio, M., Borri, G., and Neri, P., Different interactions of human and bovine serum albumin with Cibacron Blue and Blue Dextran, Ital. J. Biochem., 1982, vol. 31, pp. 100–106.

    CAS  PubMed  Google Scholar 

  19. Brown, N.A. and Müller, W.E., Binding of coumarin anticoagulants to human and bovine serum albumin. Circular dichroism studies, Pharmacol., 1978, vol. 17, pp. 233–238.

    Article  CAS  Google Scholar 

  20. Mohammadi, F., Bordbar, A.K., Divsalar, A., Mohammadi, K., and Saboury, A.A., Analysis of binding interaction of curcumin and diacetylcurcumin with human and bovine serum albumin using fluorescence and circular dichroism spectroscopy, Protein J., 2009, vol. 28, pp. 189–196.

    Article  CAS  PubMed  Google Scholar 

  21. Fonda, M.L., Trauss, C., and Guempel, U.M., The binding of pyridoxal 5’-phosphate to human serum albumin, Arch. Biochem. Biophys., 1991, vol. 288, pp. 79–86.

    Article  CAS  PubMed  Google Scholar 

  22. Silva, D., Cortez, C.M., Cunha-Bastos, J., and Louro, S.R., Methyl parathion interaction with human and bovine serum albumin, Toxicol. Lett., 2004, vol. 147, pp. 53–61.

    Article  CAS  PubMed  Google Scholar 

  23. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., and Bourne, P.E., The Protein Data Bank, Nucleic Acids Res., 2000, vol. 28, pp. 235–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ghuman, J., Zunszain, P.A., Petitpas, I., Bhattacharya, A. A., and Otagiri, M., Structural basis of the drug-binding specificity of human serum albumin, J. Mol. Biol., 2005, vol. 353, pp. 38–52.

    Article  CAS  PubMed  Google Scholar 

  25. Jensen, J.H., Molecular Modeling Basics, CRC Press, 2010.

    Book  Google Scholar 

  26. Berendsen, H.J.C., van der Spoel, D., and van Drunen, R., GROMACS: A message-passing parallel molecular dynamics implementation, Comp. Phys. Comm., 1995, vol. 91, pp. 43–56.

    Article  CAS  Google Scholar 

  27. Bujacz, A., Structures of bovine, equine and leporine serum albumin, Acta Crystallogr., Sect. D., 2012, vol. 68, pp. 1278–1289.

    Article  CAS  Google Scholar 

  28. Bujacz, A., Zielinski, K., and Sekula, B., Structural studies of bovine, equine, and leporine serum albumin complexes with naproxen, Proteins, 2014, vol. 82, pp. 2199–2208.

    Article  CAS  PubMed  Google Scholar 

  29. Sekula, B., Zielinski, K., and Bujacz, A. Crystallographic studies of the complexes of bovine and equine serum albumin with 3,5-diiodosalicylic acid, Int. J. Biol. Macromol., 2013, vol. 60, pp. 316–324.

    Article  CAS  PubMed  Google Scholar 

  30. Hypercmem Inc., Hyperchem Users Manual, Hypercube Inc., 1994.

  31. Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K., and Olson, A.J., Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function, J. Comp. Chem., 1998, vol. 19, pp. 1639–1662.

    Article  CAS  Google Scholar 

  32. Wang, Z., Ling, B., Zhang, R., Suo, Y., Liu, Y., Yu, Z., and Liu, C., Docking and molecular dynamics studies toward the binding of new natural phenolic marine inhibitors and aldose reductase, J. Mol. Graph. Model., 2009, vol. 28, pp. 162–169.

    Article  PubMed  Google Scholar 

  33. Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., and Hermans, J., Interaction models for water in relation to protein hydration, Intermolecular Forces, Ed. В. Pullman, Dordrecht, 1981, pp. 331–342.

    Chapter  Google Scholar 

  34. Berendsen, H.J.C., Postma, J.P.M., di Nola, A., van Gunsteren, W.F., and Haak, J.R., Molecular dynamics with coupling to an external bath, J. Chem. Phys., 1984, vol. 81, pp. 3684–3690.

    Article  CAS  Google Scholar 

  35. Bussi, G., Zykova-Timan, T., and Parrinello, M., Isothermal-isobaric molecular dynamics using stochastic velocity rescaling, J. Chem. Phys., 2009, vol. 130, pp. 74 101–74 110.

    Article  Google Scholar 

  36. Darden, T., York, D., and Pedersen, L., Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems, J. Chem. Phys., 1993, vol. 3, pp. 10 089–10 092.

    Google Scholar 

  37. Hess, B., Bekker, H., Berendsen, H.J.C., and Fraaije, J.G.E.M., LINCS: A linear constraint solver for molecular simulations, J. Comp. Chem., 1997, vol. 8, pp. 1463–1473.

    Article  Google Scholar 

  38. Cheng, Z., Interaction of ergosterol with bovine serum albumin and human serum albumin by spectroscopic analysis, Mol. Biol. Rep., 2012, vol. 39, pp. 9493–9508.

    Article  CAS  PubMed  Google Scholar 

  39. Belinskaya, D.A., Taborskaya, K.I., and Goncharov, N.V., Modulation of albumin–paraoxon interaction sites by fatty acids as analyzed by molecular modeling methods, Bioorg. Khim., in press.

  40. Peters, T., All about Albumin; Biochemistry, Genetics and Medical Applications, Academic Press, San Diego, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Belinskaya.

Additional information

Original Russian Text © D.A. Belinskaya, V.I. Shmurak, K.I. Taborskaya, P.P. Avdonin, P.V. Avdonin, N.V. Goncharov, 2017, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2017, Vol. 53, No. 3, pp. 170—177.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belinskaya, D.A., Shmurak, V.I., Taborskaya, K.I. et al. In silico analysis of paraoxon binding by human and bovine serum albumin. J Evol Biochem Phys 53, 191–199 (2017). https://doi.org/10.1134/S0022093017030036

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093017030036

Key words

Navigation