Skip to main content
Log in

Activation of heart contractility of the edible snail H. pomatia by thrombin. Study of the role of cAMP

  • Comparative and Ontogenic Physiology
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Thrombin acts on mammalian cells through the specific, so-called protease-activated receptors (PARs). The thrombin action is mediated via three out of four known types of these receptors—PAR1,3,4. Mammalian thrombin receptors, apart from performance of other functions, control cardiac and vascular contractility. It is not known whether receptors of such kind exist in invertebrate animals. In the present work we have showed for the first time that thrombin in the concentration range of 0.01–1 units/ml increases amplitude of contractions of the isolated heart ventricle of the edible snail Helix pomatia. Its effect is reproduced by peptide ligands of receptors PAR1 and PAR4 that have sequences Ser-Phe-Leu-Leu-Arg-Asn (SFLLRN) and Glu-Tyr-Pro-Gly-Lys-Phe (QYPGKF), respectively. A potent activator of cardiac contractility of H. pomatia is serotonin. A comparative study of the mechanisms of action of serotonin and thrombin on the edible snail heart was carried out. cAMP participates in transduction of signal from serotonin receptors. On the membrane preparation from the H. pomatia heart, it was shown that thrombin and peptide ligands PAR1 and PAR4, unlike serotonin, did not increase adenylyl cyclase activity. Thus, mechanism of activation of cardiac contractility of H. pomatia by thrombin differs from that of serotonin. It is suggested that molluscs have receptors homologous to protease-activated mammalian receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee, C.M., Lin, J.T., and Tsai, T.S., Effects of Neuroactive Agents on the Isolated Heart Activities of Marine Bivalve Meretrix lusoria, Chin. J. Physiol., 1993, vol. 36, pp. 165–170.

    PubMed  CAS  Google Scholar 

  2. Sloley, B.D., Juorio, A.V., and Durden, D.A., High-Performance Liquid Chromatographic Analysis of Monoamines and Some of Their Gamma-Glutamyl Conjugates Produced by the Brain and Other Tissues of Helix aspersa (Gastropoda), Cell. Mol. Neurobiol., 1990, vol. 10, pp. 175–192.

    Article  PubMed  CAS  Google Scholar 

  3. Cardot, J., The Monoamines in Molluscs. II. Dopamine and Neurotransmission. Cardiac Dopaminergic Innervation in Helix pomatia, J. Physiol. (Paris), 1979, vol. 75, pp. 715–728.

    CAS  Google Scholar 

  4. Lloyd, P.E., Cardioactive Neuropeptides in Gastropods, Fed. Proc., 1982, vol. 41, pp. 2948–2952.

    PubMed  CAS  Google Scholar 

  5. Moulis, A., Huddart, H., and Hill, R.B., Comparative Potency of some Extended Peptide Chain Members of the RFamide Neuropeptide Family, Assessed on the Hearts of Busycon canaliculatum and Buccinum undatum, J. Comp. Physiol., 2003, vol. 173B, pp. 637–642.

    Google Scholar 

  6. Reich, G., Dohle, K.E., Price, D.A., and Greenberg, M.J., Effects of Cardioactive Peptides on Myocardial cAMP Levels in the Snail Helix aspersa, Peptides, 1997, vol. 18, pp. 355–360.

    Article  PubMed  CAS  Google Scholar 

  7. Buckett, K.J., Peters, M., Dockray, G.J., Van Minnen, J., and Benjamin, P.R., Regulation of Heartbeat in Lymnaea by Motoneurons Containing FMRFamide-Like Peptides, J. Neurophysiol., 1990, vol. 63, pp. 1426–1435.

    PubMed  CAS  Google Scholar 

  8. Willoughby, D., Yeoman, M.S., and Benjamin, P.R., Cyclic AMP Is Involved in Cardioregulation by Multiple Neuropeptides Encoded on the FMRFamide Gene, J. Exp. Biol., 1999, vol. 202, pp. 2595–2607.

    PubMed  CAS  Google Scholar 

  9. Suslova, I.V., Solomonova, V.G., Yurchenko, O.P., and Turpaev, T.M., Quantitive Characterizations of the Negative Ionotropic Effect of Acetylcholine on the Heart of the Snail Helix pomatia, Dokl. RAN, 2005, vol. 404, pp. 325–328.

    CAS  Google Scholar 

  10. Willoughby, D., Yeoman, M.S., and Benjamin, P.R., Inositol-1,4,5-trisphosphate and Inositol-1,3,4,5-tetrabisphosphate are Second Messenger Targets for Cardioactive Neuropeptides Encoded on the FMRFamide Gene, J. Exp. Biol., 1999, vol. 202, pp. 2581–2593.

    PubMed  CAS  Google Scholar 

  11. Moulis, A., FMRFamide Neuropeptide Actions on the Molluscan Heart, Acta Biol. Hung., 2004, vol. 55, pp. 335–341.

    Article  PubMed  CAS  Google Scholar 

  12. Petrashevskaya, N.N., Koch, S.E., Bodi, I., and Schwartz, A., Calcium Cycling, Historic Overview and Perspectives. Role for Autonomic Nervous System Regulation, J. Mol. Cell. Cardiol., 2002, vol. 34, pp. 885–896.

    Article  PubMed  CAS  Google Scholar 

  13. Brodde, O.E., Broede, A., Daul, A., Kunde, K., and Michel, M.C., Receptors Systems in the Non-Failing Human Heart, Basic Res. Cardiol., 1992, vol. 87,Suppl. 1, pp. 1–14.

    PubMed  CAS  Google Scholar 

  14. Abdel-Latif, A.A., Cross Talk between Cyclic Nucleotides and Polyphosphoinositide Hydrolysis, Protein Kinases, and Contraction in Smooth Muscle, Exp. Biol. Med. (Maywood), 2001, vol. 226, pp. 153–163.

    CAS  Google Scholar 

  15. Zhukovskii, S.V., Korobov, N.V., Deigin, V.I., Pomogaibo, S.V., and Vinogradov, V.A., Study of the Mechanism of the Hypertensive Effect of the FMRF-Like Peptides, Bull. Vsesoyuz. Kardiol. NTs AMN SSSR, 1989, vol. 12, pp. 45–47.

    CAS  Google Scholar 

  16. Steinberg, S.F., The Cardiovascular Actions of Protease-Activated Receptors, Mol. Pharmacol., 2005, vol. 67, pp. 2–11.

    Article  PubMed  CAS  Google Scholar 

  17. White, A.A., Separation and Purification of Cyclic Nucleotides by Alumina Column Chromatography, Meth. Enzymol., 1974, vol. 38, pp. 41–46.

    Article  PubMed  CAS  Google Scholar 

  18. Wollemann, M. and Rozsa, K.S., Effects of Serotonin and Catecholamines on the Adenylate Cyclase of Molluscan Heart, Comp. Biochem. Physiol. C, 1975, vol. 51, pp. 63–66.

    Article  PubMed  CAS  Google Scholar 

  19. Yufu, T., Hirano, K., Bi, D., Hirano, M., Nishimura, J., Iwamoto, Y., and Kanaide, H., Racl Regulation of Surface Expression of Protease-Activated Receptor-1 and Responsiveness to Thrombin in Vascular Smooth Muscle Cells, Arterioscler. Thromb. Vasc. Biol., 2005, vol. 25, pp. 1506–1511.

    Article  PubMed  CAS  Google Scholar 

  20. Bark, N., Blomback, B., and Fatah, K., On the Occurrence of Thrombin-Like Enzymes in Mosquitoes, Thromb. Res., 1996, vol. 81, pp. 623–634.

    Article  PubMed  CAS  Google Scholar 

  21. Zhao, J., Li, L., Wu, C., and He, R.Q., Hydrolysis of Fibrinogen and Plasminogen by Immobilized Earthworm Fibrinolytic Enzyme II from Eisenia fetida, Int. J. Biol. Macromol., 2003, vol. 32, pp. 165–171.

    Article  PubMed  CAS  Google Scholar 

  22. Sawada, H., Ascidian Sperm Lysin System, Zool. Sci., 2002, vol. 19, pp. 139–151.

    Article  PubMed  CAS  Google Scholar 

  23. Macfarlane, S.R., Seatter, M.J., Kanke, T., Hunter, G.D., and Plevin, R., Proteinase-Activated Receptors, Pharmacol. Rev., 2001, vol. 53, pp. 245–282.

    PubMed  CAS  Google Scholar 

  24. Marinissen, M.J., Servitja, J.-M., Offermanns, S., Simon, M.I., and Gutkind, J.S., Thrombin Protease-Activated Receptors-1 Signals through Gq-and G13-Initiated MAPK Cascades Regulating c-Jun Expression to Induce Cell Transformation, J. Biol. Chem., 2003, vol. 248, pp. 46 814–46 825.

    Google Scholar 

  25. Barr, A.J., Brass, L.F., and Manning, D.R., Reconstitution of Receptors and GTP-Binding Regulatory Proteins (G-Proteins) in Sf9 Cells. A Direct Evaluation of Selectivity in Receptor G-protein Coupling, J. Biol. Chem., 1997, vol. 272, pp. 2223–2229.

    Article  PubMed  CAS  Google Scholar 

  26. Vogt, S., Grosse, R., Schultz, G., and Offermanns, S., Receptor-Dependent RhoA Activation in G12/G13-Deficient Cells: Genetic Evidence for an Involvement of Gq/G II, J. Biol. Chem. 2003, vol. 278, pp. 28 743–28 749.

    Article  CAS  Google Scholar 

  27. Nguyen, Q.D., Faivre, S., Bruyneel, E., Rivat, C., Seto, M., Endo, T., Mareel, M., Emami, S., and Gespach, C., RhoA-and RhoD-dependent Regulatory Switch of Gα Subunit Signaling by PAR-1 Receptors in Cellular Invasion, FASEB J., 2002, vol. 16, pp. 565–576.

    Article  PubMed  CAS  Google Scholar 

  28. Greenberg, D.L., Mize, G.J., and Takayama, T.K., Protease-Activated Receptor Mediated RhoA Signaling and Cytoskeletal Reorganization in LNCaP Cells, Biochemistry, 2003, vol. 42, pp. 702–709.

    Article  PubMed  CAS  Google Scholar 

  29. Petrashevskaya, N.N., Bodi, I., Koch, S.E., Akhter, S.A., and Schwartz, A., Effects of Alpha 1-Adrenergic Stimulation on Normal and Hypertrophied Mouse Hearts. Relation to Caveolin-3 Expression, Cardiovasc. Res., 2004, vol. 63, pp. 561–572.

    Article  PubMed  CAS  Google Scholar 

  30. Pavoine, C., Behforouz, N., Gauthier, C., Le Gouvello, S., Roudot-Thoraval, F., Martin, C.R., Pawlak, A., Feral, C., Defer, N., Houel, R., Magne, S., Amadou, A., Loisance, D., Duvaldestin, P., and Pecker, F., β2-Adrenergic Signaling in Human Heart: Shift from the Cyclic AMP to the Arachidonic Acid Pathway, Mol. Pharmacol., 2003, vol. 64, pp. 1117–1125.

    Article  PubMed  CAS  Google Scholar 

  31. Pertseva, M.N., Kuznetzova, L.A., Plesneva, S.A., Grishin, A.V., and Panchenko, M.P., Beta-Agonist-Induced Inhibitory-Guanine-Nucleotide-Binding Regulatory Protein Coupling to Adenylate Cyclase in Mollusc Anodonta cygnea Foot Muscle Sarcolemma, Eur. J. Biochem., 1992, vol. 210, pp. 279–286.

    Article  PubMed  CAS  Google Scholar 

  32. Xiao, R.P., Avdonin, P., Zhou, Y.Y., Cheng, H., Akhter, S.A., Eschenhagen, T., Lefcowitz, R.J., Koch, W.J., and Lakatta, E.G., Coupling of β2-Adrenoceptor to G1 Proteins and Its Physiological Relevance in Murine Cardiac Myocytes, Circ. Res., 1999, vol. 84, pp. 43–52.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V. G. Solomonova, P. P. Avdonin, E. S. Vinichenko, I. F. Sukhanova, and P. V. Avdonin, 2007, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2007, Vol. 43, No. 1, pp. 32–38.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solomonova, V.G., Avdonin, P.P., Vinichenko, E.S. et al. Activation of heart contractility of the edible snail H. pomatia by thrombin. Study of the role of cAMP. J Evol Biochem Phys 43, 35–42 (2007). https://doi.org/10.1134/S0022093007010036

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093007010036

Key words

Navigation