Skip to main content
Log in

Nanoscale hydrodynamic instability in a molten thin gold film induced by femtosecond laser ablation

  • Plasma, Hydro- and Gas Dynamics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

A mechanism of the formation of a nanotip with a nanoparticle at its top that appears in a thin metal film irradiated by a single femtosecond laser pulse has been studied experimentally and theoretically. It has been found that the nanotip appears owing to a melt flow and a nanojet formation, which is cooled and solidified. Within a proposed hydrodynamic model, the development of thermocapillary instability in the melted film is treated with the use of the Kuramoto-Sivashinsky-type hydrodynamic equation. The simulation shows that the nanojet nucleates in the form of a nanopeak in a pit on the top of a microbump (linear stage) and, then, grows in a nonlinear (explosive) regime of an increase in thermocapillary instability in good agreement with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge Univ. Press, Cambridge, 2012).

    Book  Google Scholar 

  2. M. Reininghaus, D. Wortmann, Z. Cao, J. M. Hoffmann, and T. Taubner, Opt. Express 21, 32176 (2013).

    Article  ADS  Google Scholar 

  3. M. A. Gubko, W. Husinsky, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, C. S. R. Nathala, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, and I. V. Treshin, Laser Phys. Lett. 11, 065301 (2014).

    Article  ADS  Google Scholar 

  4. J. P. Moening, S. S. Thanawala, and D. G. Georgiev, Appl. Phys. A 95, 635 (2009).

    Article  ADS  Google Scholar 

  5. Y. Nakata, N. Miyanaga, and T. Okada, Appl. Surf. Sci. 253, 6555 (2007).

    Article  ADS  Google Scholar 

  6. F. Korte, J. Koch, and B. N. Chichkov, Appl. Phys. A 79, 879 (2004).

    Article  ADS  Google Scholar 

  7. M. A. Gubko, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, L. V. Seleznev, and D. V. Sinitsyn, JETP Lett. 97, 599 (2013).

    Article  ADS  Google Scholar 

  8. A. I. Kuznetsov, J. Koch, and B. N. Chichkov, Opt. Express 17, 18820 (2009).

    Article  ADS  Google Scholar 

  9. A. I. Kuznetsov, R. Kiyan, and B. N. Chichkov, Opt. Express 18, 21198 (2010).

    Article  ADS  Google Scholar 

  10. Y. P. Meshcheryakov and N. M. Bulgakova, Appl. Phys. A 82, 363 (2006).

    Article  ADS  Google Scholar 

  11. http://www.amplitude-systemes.com/satsuma-fiberlaser.html

  12. U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, Nature Commun. (2014). doi:10.1038/ncomms4402

    Google Scholar 

  13. M. Cortie and M. Ford, Nanotechnology 18, 235704 (2007).

    Article  ADS  Google Scholar 

  14. C. Unger, J. Koch, L. Overmeyer, and B. N. Chichkov, Opt. Express 20, 24864 (2012).

    Article  ADS  Google Scholar 

  15. I. S. Grigor’ev and E. Z. Meilikhov, Physical Values (Energoatomizdat, Moscow, 1991) [in Russian].

    Google Scholar 

  16. Yu. N. Kul’chin, O. B. Vitrik, A. A. Kuchmizhak, A. G. Savchuk, A. A. Neomnyashchii, P. A. Danilov, D. A. Zayarnyi, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, V. I. Yurovskikh, and A. A. Samokhin, Zh. Eksp. Teor. Fiz. 145 (2014, in press).

  17. P. A. Danilov, D. A. Zayarnyi, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, V. I. Yurovskikh, Yu. N. Kul’chin, O. B. Vitrik, A. A. Kuchmizhak, E. A. Drozdova, and S. B. Odinokov, Kvant. Elektron. 44(5) (2014, in press).

    Google Scholar 

  18. D. S. Ivanov, B. Rethfeld, G. M. O’Connor, T. J. Glynn, A. N. Volkov, and L. V. Zhigilei, Appl. Phys. A 92, 791 (2008).

    Article  ADS  Google Scholar 

  19. D. S. Ivanov, A. I. Kuznetsov, V. P. Lipp, B. Rethfeld, B. N. Chichkov, M. E. Garcia, and W. Schulz, Appl. Phys. A 111, 675 (2013).

    Article  ADS  Google Scholar 

  20. V. I. Emel’yanov, Las. Phys. 21, 222 (2011).

    Article  Google Scholar 

  21. A. J. Bernoff and A. L. Bertozzi, Phys. D: Nonlin. Phenom. 85, 375 (1995).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. L. V. Zhang, P. Brunet, J. Eggers, and R. D. Deegan, Phys. Fluids 22, 122105 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Kudryashov.

Additional information

Original Russian Text © V.I. Emel’yanov, D.A. Zayarniy, A.A. Ionin, I.V. Kiseleva, S.I. Kudryashov, S.V. Makarov, T.H.T. Nguyen, A.A. Rudenko, 2014, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2014, Vol. 99, No. 9, pp. 601–605.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emel’yanov, V.I., Zayarniy, D.A., Ionin, A.A. et al. Nanoscale hydrodynamic instability in a molten thin gold film induced by femtosecond laser ablation. Jetp Lett. 99, 518–522 (2014). https://doi.org/10.1134/S0021364014090057

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364014090057

Keywords

Navigation