Skip to main content
Log in

The Use of Machine Learning in the Analytical Control of the Preparations of Medicinal Plants

  • COMPLIANCE VERIFICATION. LABORATORY ACCREDITATION
  • Published:
Inorganic Materials Aims and scope

Abstract

Despite the fact that the global market for medicinal plants amounts to hundreds of billions of dollars, there is almost no government control over the quality of such pharmaceuticals in most countries of the world. This is partly attributed to the complex composition of plant materials: traditional analytical methodology is based on the use of standard reference samples for each analyte. In this case, preparations based on medicinal plants may contain tens and hundreds of physiologically active components. Isolation of those compounds in a pure form in practice is carried out using preparative chromatography, which leads to their high cost. Moreover, variation of the chemical composition of medicinal plants depending on the geographical origin of the raw materials interferes with prescribing strict ranges of permissible contents for all physiologically active components. The combination of the above factors limits the possibilities of using traditional approaches to analysis requiring strict standardization, the list of compounds for each type of plant, levels of contents, and the availability of reference materials and standards of comparison. This led to the study of the possibility of introducing various mathematical approaches as an auxiliary methodology. Unlike traditional methodologies, machine learning approaches are based on the correct collection of the data samples. Such a sample should contain groups of samples that correspond to the states of the object which the developed algorithm must distinguish: authentic/fake, pure/containing impurities, effective/not containing a certain level of active components, etc. This review is devoted to consideration of the application of machine learning techniques to the problems of chemical analysis and production control of raw materials of medicinal plants and preparations on their basis for the last 15 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Williams, P.G., Health benefits of herbs and spices: the past, the present, the future—Public health, Med. J. Aust., 2006, vol. 4, no. 4, pp. S17–S18.

    Google Scholar 

  2. Hostettmann, K. and Marston, A., Twenty years of research into medicinal plants: results and perspectives, Phytochem. Rev., 2002, vol. 1, no. 3, pp. 275–285.

    Article  CAS  Google Scholar 

  3. Li, P., Qi, L.-W., Liu, E.-H., et al., Analysis of Chinese herbal medicines with holistic approaches and integrated evaluation models, Trends Anal. Chem., 2008, vol. 27, no. 1, pp. 66–77.

    Article  CAS  Google Scholar 

  4. Goodacre, R., York, E.V., Heald, J.K., and Scott, I.M., Chemometric discrimination of unfractionated plant extracts analyzed by electrospray mass spectrometry, Phytochemistry, 2003, vol. 62, no. 6, pp. 859–863.

    Article  CAS  PubMed  Google Scholar 

  5. Gorgulu, S.T., Dogan, M., and Severcan, F., The characterization and differentiation of higher plants by Fourier transform infrared spectroscopy, Appl. Spectrosc., 2007, vol. 61, no. 3, pp. 300–308.

    Article  CAS  PubMed  Google Scholar 

  6. He, K., Pauli, G.F., Zheng, B., et al., Cimicifuga species identification by high performance liquid chromatography-photodiode array/mass spectrometric/evaporative light scattering detection for quality control of black cohosh products, J. Chromatogr. A, 2006, vol. 1112, nos. 1–2, pp. 241–254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Folashade, O., Omoregie, H., and Ochogu, P., Standardization of herbal medicines—a review, Int. J. Biodiversity Conserv., 2012, vol. 4, no. 3, pp. 101–112.

    Google Scholar 

  8. Dahanukar, S., Kulkarni, R., and Rege, N., Pharmacology of medicinal plants and natural products, Indian J. Pharmacol., 2000, vol. 32, no. 4, pp. S81–S118.

    CAS  Google Scholar 

  9. European Parliament and of the Council Directive 2004/24/ec, 2004. http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32004L0024&qid= 1451884773824. Accessed June 5, 2018.

  10. Food and Drug Administration Dietary supplements. http://www.fda.gov/Food/DietarySupplements. Accessed June 5, 2018.

  11. Kessler, R.C., Davis, R.B., Foster, D.F., et al., Long-term trends in the use of complementary and alternative medical therapies in the united states, Ann. Intern. Med., 2001, vol. 135, no. 4, pp. 262–268.

    Article  CAS  PubMed  Google Scholar 

  12. Chaudhury, R.R., Herbal remedies and traditional medicines in reproductive health care practices and their clinical evaluation, J. Reprod. Health Med., 2015, vol. 1, no. 1, pp. 44–46.

    Article  Google Scholar 

  13. Petrovska, B.B., Historical review of medicinal plants’ usage, Pharmacogn. Rev., 2012, vol. 6, no. 11, p. 1.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Maroyi, A., Traditional use of medicinal plants in south-central Zimbabwe: review and perspectives, J. Ethnobiol. Ethnomed., 2013, vol. 9, no. 1, p. 31.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wang, M.-W., Richard, D.Y., and Zhu, Y., Pharmacology in China: a brief overview, Trends Pharmacol. Sci., 2013, vol. 34, no. 10, pp. 532–533.

    Article  CAS  PubMed  Google Scholar 

  16. Jing, J., Parekh, H.S., Wei, M., et al., Advances in analytical technologies to evaluate the quality of traditional Chinese medicines, Trends Anal. Chem., 2013, vol. 44, pp. 39–45.

    Article  CAS  Google Scholar 

  17. Simmler, C., Napolitano, J.G., McAlpine, J.B., et al., Universal quantitative NMR analysis of complex natural samples, Curr. Opin. Biotechnol., 2014, vol. 25, pp. 51–59.

    Article  CAS  PubMed  Google Scholar 

  18. Bansal, A., Chhabra, V., Rawal, R.K., and Sharma, S., Chemometrics: a new scenario in herbal drug standardization, J. Pharm. Anal., 2014, vol. 4, no. 4, pp. 223–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liang, Y.-Z., Xie, P., and Chan, K., Quality control of herbal medicines, J. Chromatogr. B, 2004, vol. 812, nos. 1–2, pp. 53–70.

    Article  CAS  Google Scholar 

  20. Jiang, Y., David, B., Tu, P., and Barbin, Y., Recent analytical approaches in quality control of traditional Chinese medicines—a review, Anal. Chim. Acta, 2010, vol. 657, no. 1, pp. 9–18.

    Article  CAS  PubMed  Google Scholar 

  21. Rodionova, O.E., Chemometric approach to big data in chemistry, Ross. Khim. Zh., 2006, vol. 50, no. 2, pp. 128–144.

    CAS  Google Scholar 

  22. Monakhova, Y.B., Holzgrabe, U., and Diehl, B.W., Current role and future perspectives of multivariate (chemometric) methods in NMR spectroscopic analysis of pharmaceutical products, J. Pharm. Biomed. Anal., 2017, vol. 147, pp. 580–589.

    Article  CAS  PubMed  Google Scholar 

  23. Kumar, D., Nuclear magnetic resonance (NMR) spectroscopy for metabolic profiling of medicinal plants and their products, Crit. Rev. Anal. Chem., 2016, vol. 46, no. 5, pp. 400–412.

    Article  CAS  PubMed  Google Scholar 

  24. Bishop, C., Pattern Recognition and Machine Learning, New York: Springer-Verlag, 2016.

    Google Scholar 

  25. Bridges, C.C., Jr., Hierarchical cluster analysis, Psychol. Rep., 1966, vol. 18, no. 3, pp. 851–854.

    Article  Google Scholar 

  26. Wold, S., Esbensen, K., and Geladi, P., Principal component analysis, Chemom. Intell. Lab. Syst., 1987, vol. 2, nos. 1–3, pp. 37–52.

    Article  CAS  Google Scholar 

  27. Mimmack, G.M., Mason, S.J., and Galpin, J.S., Choice of distance matrices in cluster analysis: defining regions, J. Clim., 2001, vol. 14, no. 12, pp. 2790–2797.

    Article  Google Scholar 

  28. Mao, J. and Xu, J., Discrimination of herbal medicines by molecular spectroscopy and chemical pattern recognition, Spectrochim. Acta, Part A, 2006, vol. 65, no. 2, pp. 497–500.

    Article  CAS  Google Scholar 

  29. Bai, Y., Wang, X., Lei, J., et al., Discrimination of Fructus forsythiae according to geographical origin with near-infared spectroscopy, Proc. 2012 Int. Conf. on Biomedical Engineering and Biotechnology, Piscataway, NJ: Inst. Electr. Electron. Eng., 2012, pp. 175–178.

  30. Schulz, H., Baranska, M., Quilitzsch, R., et al., Characterization of peppercorn, pepper oil, and pepper oleoresin by vibrational spectroscopy methods, J. Agric. Food Chem., 2005, vol. 53, no. 9, pp. 3358–3363.

    Article  CAS  PubMed  Google Scholar 

  31. Pan, Y., Zhang, J., Shen, T., et al., Liquid chromatography tandem mass spectrometry combined with Fourier transform mid-infrared spectroscopy and chemometrics for comparative analysis of raw and processed Gentiana rigescens,J. Liq. Chromatogr. Relat. Technol., 2015, vol. 38, no. 14, pp. 1407–1416.

    Article  CAS  Google Scholar 

  32. Abdi, H. and Williams, L.J., Principal component analysis, Wiley Interdiscip. Rev.: Comput. Stat., 2010, vol. 2, no. 4, pp. 433–459.

    Article  Google Scholar 

  33. Chan, C.-O., Chu, C.-C., Mok, D. K.-W., and Chau, F.-T., Analysis of berberine and total alkaloid content in Cortex phellodendri by near infrared spectroscopy (NIRS) compared with high-performance liquid chromatography coupled with ultra-visible spectrometric detection, Anal. Chim. Acta, 2007, vol. 592, no. 2, pp. 121–131.

    Article  CAS  PubMed  Google Scholar 

  34. Daolio, C., Beltrame, F.L., Ferreira, A.G., et al., Classification of commercial Catuaba samples by NMR, HPLC and chemometrics, Phytochem. Anal., 2008, vol. 19, no. 3, pp. 218–228.

    Article  CAS  PubMed  Google Scholar 

  35. Flores, I.S., Silva, A.K., Furquim, L.C., et al., HR-MAS NMR allied to chemometric on Hancornia speciosa varieties differentiation, J. Braz. Chem. Soc., 2018, vol. 29, no. 4, pp. 708–714.

    CAS  Google Scholar 

  36. Li, J.-R., Sun, S.-Q., Wang, X.-X., et al., Differentiation of five species of Danggui raw materials by FTIR combined with 2D-COS IR, J. Mol. Struct., 2014, vol. 1069, pp. 229–235.

    Article  CAS  Google Scholar 

  37. Wang, M., Fu, J., Guo, H., et al., Discrimination of crude and processed rhubarb products using a chemometric approach based on ultra fast liquid chromatography with ion trap/time-of-flight mass spectrometry, J. Sep. Sci., 2015, vol. 38, no. 3, pp. 395–401.

    Article  CAS  PubMed  Google Scholar 

  38. Shi, X., Wu, Y., Lv, T., et al., A chemometric-assisted LC-MS/MS method for the simultaneous determination of 17 limonoids from different parts of Xylocarpus granatum fruit, Anal. Bioanal. Chem., 2017, vol. 409, no. 19, pp. 4669–4679.

    Article  CAS  PubMed  Google Scholar 

  39. Wang, Y., Liu, E., and Li, P., Chemotaxonomic studies of nine Paris species from China based on ultra-high performance liquid chromatography tandem mass spectrometry and Fourier transform infrared spectroscopy, J. Pharm. Biomed. Anal., 2017, vol. 140, pp. 20–30.

    Article  CAS  PubMed  Google Scholar 

  40. Pan, Y., Zhang, J., Zhao, Y.-L., et al., Chemotaxonomic studies of nine Gentianaceae species from western China based on liquid chromatography tandem mass spectrometry and Fourier transform infrared spectroscopy, Phytochem. Anal., 2016, vol. 27, nos. 3–4, pp. 158–167.

    Article  CAS  PubMed  Google Scholar 

  41. Nigutová, K., Kusari, S., Sezgin, S., et al., Chemometric evaluation of hypericin and related phytochemicals in 17 in vitro cultured Hypericum species, hairy root cultures and hairy root-derived transgenic plants, J. Pharm. Pharmacol., 2017, vol. 69. https://doi.org/10.1111/jph.p.12782

  42. Oliveira, I., Pinto, T., Faria, M., et al., Morphometrics and chemometrics as tools for medicinal and aromatic plants characterization, J. Appl. Bot. Food Qual., 2017, vol. 90, pp. 31–42.

    CAS  Google Scholar 

  43. Bittner, M., Schenk, R., Springer, A., and Melzig, M.F., Economical, plain, and rapid authentication of Actaea acemosa L. (syn. Cimicifuga acemosa, black cohosh) herbal raw material by resilient RP-PDA-HPLC and chemometric analysis, Phytochem. Anal., 2016, vol. 27, no. 6, pp. 318–325.

    Article  CAS  PubMed  Google Scholar 

  44. Zimmermann, B. and Kohler, A., Infrared spectroscopy of pollen identifies plant species and genus as well as environmental conditions, PLoS One, 2014, vol. 9, no. 4, p. e95417.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Schulz, H., Özkan, G., Baranska, M., et al., Characterization of essential oil plants from Turkey by IR and Raman spectroscopy, Vib. Spectrosc., 2005, vol. 39, no. 2, pp. 249–256.

    Article  CAS  Google Scholar 

  46. Al-Musayeib, N., Ebada, S.S., Gad, H.A., et al., Chemotaxonomic diversity of three Ficus species: their discrimination using chemometric analysis and their role in combating oxidative stress, Pharmacogn. Mag., 2017, vol. 13, suppl., p. S613.

    PubMed  PubMed Central  Google Scholar 

  47. Fan, G., Zhang, M.Y., Zhou, X.D., et al., Quality evaluation and species differentiation of Rhizoma coptidis by using proton nuclear magnetic resonance spectroscopy, Anal. Chim. Acta, 2012, vol. 747, pp. 76–83.

    Article  CAS  PubMed  Google Scholar 

  48. Mesquita, P.R., Nunes, E.C., dos Santos, F.N., et al., Discrimination of Eugenia uniflora L. biotypes based on volatile compounds in leaves using HS-SPME/GC-MS and chemometric analysis, Microchem. J., 2017, vol. 130, pp. 79–87.

    Article  CAS  Google Scholar 

  49. Yudthavorasit, S., Wongravee, K., and Leepipatpiboon, N., Characteristic fingerprint based on gingerol derivative analysis for discrimination of ginger (Zingiber officinale) according to geographical origin using HPLC-DAD combined with chemometrics, Food Chem., 2014, vol. 158, pp. 101–111.

    Article  CAS  PubMed  Google Scholar 

  50. Gad, H.A. and Bouzabata, A., Application of chemometrics in quality control of turmeric (Curcuma longa) based on ultra-violet, Fourier transform-infrared and 1H NMR spectroscopy, Food Chem., 2017, vol. 237, pp. 857–864.

    Article  CAS  PubMed  Google Scholar 

  51. Viapiana, A., Struck-Lewicka, W., Konieczynski, P., et al., An approach based on HPLC-fingerprint and chemometrics to quality consistency evaluation of Matricaria chamomilla L. commercial samples, Front. Plant Sci., 2016, vol. 7, p. 1561.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Chu, B.-W., Zhang, J., Li, Z.-M., et al., Evaluation and quantitative analysis of different growth periods of herb–arbor intercropping systems using HPLC and UV–vis methods coupled with chemometrics, J. Nat. Med., 2016, vol. 70, no. 4, pp. 803–810.

    Article  CAS  PubMed  Google Scholar 

  53. Chen, N.-D., Chen, N.-F., Li, J., et al., Rapid authentication of different ages of tissue-cultured and wild Dendrobium huoshanense as well as wild Dendrobium henanense using FTIR and 2D-cos IR, J. Mol. Struct., 2015, vol. 1101, pp. 101–108.

    Article  CAS  Google Scholar 

  54. Zaini, N.N., Osman, R., Juahir, H., and Saim, N., Development of chromatographic fingerprints of Eurycoma longifolia (tongkat ali) roots using online solid phase extraction-liquid chromatography (SPE–LC), Molecules, 2016, vol. 21, no. 5, p. 583.

    Article  CAS  PubMed Central  Google Scholar 

  55. Hinton, G.E. and Salakhutdinov, R.R., Reducing the dimensionality of data with neural networks, Science, 2006, vol. 313, no. 5786, pp. 504–507.

    Article  CAS  PubMed  Google Scholar 

  56. Chen, X., Wu, D., He, Y., and Liu, S., Nondestructive differentiation of Panax species using visible and shortwave near-infrared spectroscopy, Food Bioprocess Technol., 2011, vol. 4, no. 5, pp. 753–761.

    Article  Google Scholar 

  57. Zhu, Y., and Tan, A.T.L., Discrimination of wild-grown and cultivated Ganoderma lucidum by Fourier transform infrared spectroscopy and chemometric methods, Am. J. Anal. Chem., 2015, vol. 6, no. 5, pp. 480–491.

    Article  CAS  Google Scholar 

  58. Lever, J., Krzywinski, M., and Altman, N., Points of significance: principal component analysis, Nat. Methods, 2017, vol. 14, no. 14, pp. 641–642.

    Article  CAS  Google Scholar 

  59. Refaeilzadeh, P., Tang, L., and Liu, H., Cross-validation, in Encyclopedia of Database Systems, New York: Springer-Verlag, 2009, pp. 532–538.

    Google Scholar 

  60. Witten, I.H., Frank, E., Hall, M.A., and Pal, C.J., Data Mining: Practical Machine Learning Tools and Techniques, Boston, MA: Morgan Kaufman, 2006.

    Google Scholar 

  61. Fan, Q., Wang, Y., Sun, P., et al., Discrimination of ephedra plants with diffuse reflectance FT-NIRS and multivariate analysis, Talanta, 2010, vol. 80, no. 3, pp. 1245–1250.

    Article  CAS  PubMed  Google Scholar 

  62. Chen, Y., Xie, M.-Y., Yan, Y., et al., Discrimination of Ganoderma lucidum according to geographical origin with near infrared diffuse reflectance spectroscopy and pattern recognition techniques, Anal. Chim. Acta, 2008, vol. 618, no. 2, pp. 121–130.

    Article  CAS  PubMed  Google Scholar 

  63. Wold, S., Sjöström, M., and Eriksson, L., PLS-regression: a basic tool of chemometrics, Chemom. Intell. Lab. Syst., 2001, vol. 58, no. 2, pp. 109–130.

    Article  CAS  Google Scholar 

  64. Geladi, P. and Kowalski, B.R., Partial least-squares regression: a tutorial, Anal. Chim. Acta, 1986, vol. 185, pp. 1–17.

    Article  CAS  Google Scholar 

  65. Tarachiwin, L., Katoh, A., Ute, K., and Fukusaki, E., Quality evaluation of Angelica acutiloba kitagawa roots by 1H NMR-based metabolic fingerprinting, J. Pharm. Biomed. Anal., 2008, vol. 48, no. 1, pp. 42–48.

    Article  CAS  PubMed  Google Scholar 

  66. Li, Y., Zhang, J., Zhao, Y., et al., Characteristic fingerprint based on low polar constituents for discrimination of Wolfiporia extensa according to geographical origin using UV spectroscopy and chemometrics methods, J. Anal. Methods Chem., 2014, vol. 2014.

  67. Zhao, Y., Zhang, J., Jin, H., et al., Discrimination of Gentiana rigescens from different origins by Fourier transform infrared spectroscopy combined with chemometric methods, J. AOAC Int., 2015, vol. 98, no. 1, pp. 22–26.

    Article  CAS  PubMed  Google Scholar 

  68. Nsuala, B.N., Kamatou, G.P., Sandasi, M., et al., Variation in essential oil composition of Leonotis leonurus, an important medicinal plant in South Africa, Biochem. Syst. Ecol., 2017, vol. 70, pp. 155–161.

    Article  CAS  Google Scholar 

  69. Hu, Y., Kong, W., Yang, X., et al., GC-MS combined with chemometric techniques for the quality control and original discrimination of Curcuma longa rhizome: analysis of essential oils, J. Sep. Sci., 2014, vol. 37, no. 4, pp. 404–411.

    Article  CAS  PubMed  Google Scholar 

  70. Pan, Y., Zhang, J., Li, H., et al., Characteristic fingerprinting based on macamides for discrimination of maca (Lepidium meyenii) by LC/MS/MS and multivariate statistical analysis, J. Sci. Food Agric., 2016, vol. 96, no. 13, pp. 4475–4483.

    Article  CAS  PubMed  Google Scholar 

  71. Pan, Y., Zhang, J., Shen, T., et al., Comparative metabolic fingerprinting of Gentiana rhodantha from different geographical origins using LC-UV-MS/MS and multivariate statistical analysis, BMC Biochem., 2015, vol. 16, no. 1, p. 9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hoffmann, J.F., Carvalho, I.R., Barbieri, R.L., et al., Butia spp. (Arecaceae) LC-MS-based metabolomics for species and geographical origin discrimination, J. Agric. Food Chem., 2017, vol. 65, no. 2, pp. 523–532.

    Article  CAS  PubMed  Google Scholar 

  73. Zheng, S., Jiang, X., Wu, L., et al., Chemical and genetic discrimination of Cistanches herba based on UPLC-QTOF/MS and DNA barcoding, PloS One, 2014, vol. 9, no. 5, p. e98061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Shevchuk, A., Jayasinghe, L., and Kuhnert, N., Differentiation of black tea infusions according to origin, processing and botanical varieties using multivariate statistical analysis of LC-MS data, Food Res. Int., 2018, vol. 109, pp. 387–402.

    Article  CAS  PubMed  Google Scholar 

  75. da Silva, G.S., Canuto, K.M., Ribeiro, P.R.V., et al., Chemical profiling of guarana seeds (Paullinia cupana) from different geographical origins using UPLC-QTOF-MS combined with chemometrics, Food Res. Int., 2017, vol. 102, pp. 700–709.

    Article  CAS  PubMed  Google Scholar 

  76. Tan, T., Zhang, J., Xu, X., et al., Geographical discrimination of Glechomae herba based on fifteen phenolic constituents determined by LC–MS/MS method combined with chemometric methods, Biomed. Chromatogr., 2018, vol. 32, no. 8, p. e4239.

    Article  CAS  PubMed  Google Scholar 

  77. He, S., Liu, X., Zhang, W., et al., Discrimination of the Coptis chinensis geographic origins with surface enhanced Raman scattering spectroscopy, Chemom. Intell. Lab. Syst., 2015, vol. 146, pp. 472–477.

    Article  CAS  Google Scholar 

  78. Chen, C.-W., Yan, H., and Han, B.-X., Rapid identification of three varieties of Chrysanthemum with near infrared spectroscopy, Rev. Bras. Farmacogn., 2014, vol. 24, no. 1, pp. 33–37.

    Article  CAS  Google Scholar 

  79. Lee, B.-J., Kim, H.-Y., Lim, S. R., et al., Discrimination and prediction of cultivation age and parts of Panaxginseng by Fourier-transform infrared spectroscopy combined with multivariate statistical analysis, PloS One, 2017, vol. 12, no. 10, p. e0186664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Fu, H.-Y., Huang, D.-C., Yang, T.-M., et al., Rapid recognition of Chinese herbal pieces of Areca catechu by different concocted processes using Fourier transform mid-infrared and near-infrared spectroscopy combined with partial least-squares discriminant analysis, Chin. Chem. Lett., 2013, vol. 24, no. 7, pp. 639–642.

    Article  CAS  Google Scholar 

  81. Wang, M., Avula, B., Wang, Y.-H., et al., An integrated approach utilising chemometrics and GC/MS for classification of chamomile flowers, essential oils and commercial products, Food Chem., 2014, vol. 152, pp. 391–398.

    Article  CAS  PubMed  Google Scholar 

  82. Shikanga, E.A., Viljoen, A.M., Vermaak, I., and Combrinck, S., A novel approach in herbal quality control using hyperspectral imaging: discriminating between Sceletium tortuosum and Sceletium crassicaule,Phytochem. Anal., 2013, vol. 24, no. 6, pp. 550–555.

    Article  CAS  PubMed  Google Scholar 

  83. Millán, L., Sampedro, M.C., Sánchez, A., et al., Liquid chromatography-quadrupole time of flight tandem mass spectrometry-based targeted metabolomic study for varietal discrimination of grapes according to plant sterols content, J. Chromatogr. A, 2016, vol. 1454, pp. 67–77.

    Article  CAS  PubMed  Google Scholar 

  84. Mncwangi, N.P., Viljoen, A.M., Zhao, J., et al., What the devil is in your phytomedicine? Exploring species substitution in Harpagophytum through chemometric modeling of 1H-NMR and UHPLC-MS datasets, Phytochemistry, 2014, vol. 106, pp. 104–115.

    Article  CAS  PubMed  Google Scholar 

  85. Mavimbela, T., Viljoen, A., and Vermaak, I., Differentiating between Agathosma betulina and Agathosma crenulata—A quality control perspective, J. Appl. Res. Med. Arom. Plants, 2014, vol. 1, no. 1, pp. e8–e14.

    Google Scholar 

  86. Liaw, A. and Wiener, M., Classification and regression by randomForest, Newslett.R Proj., 2002, vol. 2, no. 3, pp. 18–22.

    Google Scholar 

  87. de Santana, F.B., Mazivila, S.J., Gontijo, L.C., et al., Rapid discrimination between authentic and adulterated andiroba oil using FTIR-HATR spectroscopy and random forest, Food Anal. Methods, 2018, vol. 11, no. 7, pp. 1927–1935.

    Article  Google Scholar 

  88. Steinwart, I. and Christmann, A., Support Vector Machines, New York: Springer-Verlag, 2008.

    Google Scholar 

  89. Zheng, L., Watson, D., Johnston, B., et al., A chemometric study of chromatograms of tea extracts by correlation optimization warping in conjunction with PCA, support vector machines and random forest data modeling, Anal. Chim. Acta, 2009, vol. 642, nos. 1–2, pp. 257–265.

    Article  CAS  PubMed  Google Scholar 

  90. Ni, Y., Mei, M., and Kokot, S., One-and two-dimensional gas chromatography-mass spectrometry and high performance liquid chromatography-diode-array detector fingerprints of complex substances: A comparison of classification performance of similar, complex Rhizoma curcumae samples with the aid of chemometrics, Anal. Chim. Acta, 2012, vol. 712, pp. 37–44.

    Article  CAS  PubMed  Google Scholar 

  91. Yao, S., Li, T., Liu, H., et al., Traceability of Boletaceae mushrooms using data fusion of UV-visible and FTIR combined with chemometrics methods, J. Sci. Food Agric., 2018, vol. 98, no. 6, pp. 2215–2222.

    Article  CAS  PubMed  Google Scholar 

  92. Dall’Acqua, Y.G., Cunha, Jr., L.C., Nardini, V., et al., Discrimination of Euterpe oleracea Mart. (Açaí) and Euterpe edulis Mart. (Juçara) intact fruit using near-infrared (NIR) spectroscopy and linear discriminant analysis, J. Food Process. Preserv., 2015, vol. 39, no. 6, pp. 2856–2865.

    Article  CAS  Google Scholar 

  93. Wold, S. and Sjöström, M., SIMCA: a method for analyzing chemical data in terms of similarity and analogy, in Chemometrics: Theory and Application, ACS Symposium Series vol. 52, Washington, DC: Am. Chem. Soc., 1977, pp. 243–282.

  94. Wang, P. and Yu, Z., Species authentication and geographical origin discrimination of herbal medicines by near infrared spectroscopy: a review, J. Pharm. Anal., 2015, vol. 5, no. 5, pp. 277–284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Li, W., Cheng, Z., Wang, Y., and Qu, H., Quality control of Lonicera japonica Flos using near infrared spectroscopy and chemometrics, J. Pharm. Biomed. Anal., 2013, vol. 72, pp. 33–39.

    Article  CAS  PubMed  Google Scholar 

  96. Gad, H.A., El-Ahmady, S.H., Abou-Shoer, M.I., and Al-Azizi, M.M., A modern approach to the authentication and quality assessment of thyme using UV spectroscopy and chemometric analysis, Phytochem. Anal., 2013, vol. 24, no. 6, pp. 520–526.

    Article  CAS  PubMed  Google Scholar 

  97. Deconinck, E., Aouadi, C., Bothy, J., and Courselle, P., Detection and identification of multiple adulterants in plant food supplements using attenuated total reflectance—Infrared spectroscopy, J. Pharm. Biomed. Anal., 2018, vol. 152, pp. 111–119.

    Article  CAS  PubMed  Google Scholar 

  98. Cui, X., Zhang, Z., Ren, Y., et al., Quality control of the powder pharmaceutical samples of sulfaguanidine by using NIR reflectance spectrometry and temperature-constrained cascade correlation networks, Talanta, 2004, vol. 64, no. 4, pp. 943–948.

    Article  CAS  PubMed  Google Scholar 

  99. Kramer, O., K-nearest neighbors, in Dimensionality Reduction with Unsupervised Nearest Neighbors, New York: Springer-Verlag, 2013, pp. 13–23.

    Book  Google Scholar 

  100. Tian, R.-T., Xie, P.-S., and Liu, H.-P., Evaluation of traditional Chinese herbal medicine: chaihu (Bupleuri radix) by both high-performance liquid chromatographic and high-performance thin-layer chromatographic fingerprint and chemometric analysis, J. Chromatogr. A, 2009, vol. 1216, no. 11, pp. 2150–2155.

    Article  CAS  PubMed  Google Scholar 

  101. Li, C., Yang, S.-C., Guo, Q.-S., et al., Geographical traceability of Marsdenia tenacissima by Fourier transform infrared spectroscopy and chemometrics, Spectrochim. Acta, Part A 2016, vol. 152, pp. 391–396.

    Article  CAS  Google Scholar 

  102. Kanakis, C.D., Petrakis, E.A., Kimbaris, A.C., et al., Classification of greek Mentha pulegium L. (Pennyroyal) samples, according to geographical location by Fourier transform infrared spectroscopy, Phytochem. Anal., 2012, vol. 23, no. 1, pp. 34–43.

    Article  CAS  PubMed  Google Scholar 

  103. Lee, L.C., Liong, C.-Y., and Jemain, A.A., A contemporary review on data preprocessing (DP) practice strategy in ATR-FTIR spectrum, Chemom. Intell. Lab. Syst., 2017, vol. 163, pp. 64–75.

    Article  CAS  Google Scholar 

  104. Kokalj, M., Rihtariè, M., and Kreft, S., Commonly applied smoothing of IR spectra showed unappropriate for the identification of plant leaf samples, Chemom. Intell. Lab. Syst., 2011, vol. 108, no. 2, pp. 154–161.

    Article  CAS  Google Scholar 

  105. Gudi, G., Krähmer, A., Krüger, H., and Schulz, H., Attenuated total reflectance—Fourier transform infrared spectroscopy on intact dried leaves of sage (Salvia officinalis L.): accelerated chemotaxonomic discrimination and analysis of essential oil composition, J. Agric. Food Chem., 2015, vol. 63, no. 39, pp. 8743–8750.

    Article  CAS  PubMed  Google Scholar 

  106. Chuang, Y.-K., Yang, I.-C., Lo, Y.M., et al., Integration of independent component analysis with near-infrared spectroscopy for analysis of bioactive components in the medicinal plant Gentiana scabra Bunge, J. Food Drug Anal., 2014, vol. 22, no. 3, pp. 336–344.

    Article  CAS  PubMed  Google Scholar 

  107. Hyvärinen, A., Karhunen, J., and Oja, E., Independent Component Analysis, New York: Wiley, 2004.

    Google Scholar 

  108. Belščak-Cvitanović, A., Valinger, D., Benković, M., et al., Integrated approach for bioactive quality evaluation of medicinal plant extracts using HPLC–DAD, spectrophotometric, near infrared spectroscopy and chemometric techniques, Int. J. Food Prop., 2018, vol. 20, suppl. 3, pp. 1–18.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Nazarenko.

Additional information

Translated by V. Mittova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazarenko, D.V., Rodin, I.A. & Shpigun, O.A. The Use of Machine Learning in the Analytical Control of the Preparations of Medicinal Plants. Inorg Mater 55, 1428–1438 (2019). https://doi.org/10.1134/S0020168519140115

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168519140115

Keywords:

Navigation