Skip to main content
Log in

Preparation of β-Ca3(PO4)2/Poly(D,L-lactide) and β-Ca3(PO4)2/Poly(ε-caprolactone) Biocomposite Implants for Bone Substitution

  • Published:
Inorganic Materials Aims and scope

Abstract

Highly permeable macroporous implants of various architectures for bone grafting have been fabricated by thermal extrusion 3D printing using highly filled β-Ca3(PO4)2/poly(D,L-lactide) (degree of filling up to 70 wt %) and β-Ca3(PO4)2/poly(ε-caprolactone) (degree of filling up to 70 wt %) composite filaments. To modify the surface of the composite macroporous implants with the aim of improving their wettability by saline solutions, we have proposed exposing them to a cathode discharge plasma (2.5 W, air as plasma gas) in combination with subsequent etching in a 0.5 M citric acid solution. It has been shown that the main contribution to changes in the wettability (contact angle) of the composites is made by the changes produced in their surface morphology by etching in a low-temperature plasma and citric acid. An alternative approach to surface modification of the composites is to produce a carbonate hydroxyapatite layer via precipitation from a simulated body fluid solution a factor of 5 supersaturated relative to its natural analog (5xSBF).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grover, L.M., Wright, A.J., Gbureck, U., Bolarinwa, A., Song, J., Liu, Y., Farrar, D.F., Howling, G., Rose, J., and Barralet, J.E., The effect of amorphous pyrophosphate on calcium phosphate cement resorption and bone generation, Biomaterials, 2013, vol. 34, no. 28, pp. 6631–6637.

    Article  CAS  Google Scholar 

  2. Yang, Y., Yang, S., Wang, Y., Yu, Z., Ao, H., Zhang, H., Qin, L., Guillaume, O., Eglin, D., Richards, R.G., and Tang, T., Anti-infective efficacy, cytocompatibility and biocompatibility of a 3D-printed osteoconductive composite scaffold functionalized with quaternized chitosan, Acta Biomater., 2016, vol. 46, pp. 112–128.

    CAS  Google Scholar 

  3. Danilevicius, P., Georgiadi, L., Pateman, Ch.J., Claeyssens, F., Chatzinikolaidou, M., and Farsari, M., The effect of porosity on cell ingrowth into accurately defined, laser-made, polylactide-based 3D scaffolds, Appl. Surf. Sci., 2015, vol. 336, pp. 2–10.

    CAS  Google Scholar 

  4. Dhandayuthapani, B., Yoshida, Ya., Maekawa, T., and Kumar, S.D., Polymeric scaffolds in tissue engineering application: a review. Int. J. Polym. Sci., 2011, vol. 2011, pp. 1–19.

    Article  Google Scholar 

  5. Shtil’man, M., Polimery mediko-biologicheskogo naznacheniya (Polymers for Biomedical Applications), Moscow: IKTs Akademkniga, 2006.

    Google Scholar 

  6. Woodruff, M.A. and Hutmacher, D.W., The return of a forgotten polymer—polycaprolactone in the 21st century, Prog. Polym. Sci., 2010, vol. 35, no. 10, pp. 1217–1256.

    Article  CAS  Google Scholar 

  7. Pretula, J., Slomkowski, S., and Penczek, S., Polylactides— methods of synthesis and characterization, Adv. Drug Delivery Rev., 2016, vol. 107, pp. 3–16.

    Article  CAS  Google Scholar 

  8. Russmueller, G., et al., Tricalcium phosphate-based biocomposites for mandibular bone regeneration—a histological study in sheep, J. Cranio-Maxillofacial Surg., 2015, vol. 43, no. 5, pp. 696–704.

    Article  CAS  Google Scholar 

  9. Mayr, H.O., Suedkamp, N.P., Hammer, T., Hein, W., Hube, R., Roth, P.V., and Bernstein, A., β-Tricalcium phosphate for bone replacement: stability and integration in sheep, J. Biomech., 2015, vol. 48, no. 6, pp. 1023–1031.

    Article  Google Scholar 

  10. Jordá-Vilaplana, A., Fombuena, V., García-García, D., Samper, M.D., and Sánchez-Nácher, L., Surface modification of polylactic acid (PLA) by air atmospheric plasma treatment, Eur. Polym. J., 2014, vol. 58, pp. 23–33.

    Article  Google Scholar 

  11. Barrere, F., van Blitterswijk, C.A., de Groot, K., and Layrolle, P., Influence of ionic strength and carbonate on the Ca–P coating formation from SBFx5 solution, Biomaterials, 2002, vol. 23, pp. 1921–1930.

    Article  CAS  Google Scholar 

  12. Hofmann, I., Müller, L., Greilc, P., and Müller, F.A., Precipitation of carbonated calcium phosphate powders from a highly supersaturated SBF solution, Key Eng. Mater., 2007, vols. 330–332, pp. 59–62.

    Article  Google Scholar 

  13. Hirotsu, T., Nakayama, K., Tsujisaka, T., Mas, A., and Schue, F., Plasma surface treatments of melt-extruded sheets of poly(L-lactic acid), Polym. Eng. Sci., 2002, vol. 42, pp. 299–306.

    Article  CAS  Google Scholar 

  14. Morent, R., De Geyter, N., Desmet, T., Dubruel, P., and Leys, Ch., Plasma surface modification of biodegradable polymers: a review, Plasma Process. Polym., 2011, no. 8, pp. 171–190.

    Article  CAS  Google Scholar 

  15. Bolbasov, E.N., Rybachuk, M., Golovkin, A.S., Antonova, L.V., Shesterikov, E.V., Malchikhina, A.I., Novikov, V.A., Anissimov, Y.G., and Tverdokhlebov, S.I., Surface modification of poly(L-lactide) and polycaprolactone bioresorbable polymers using RF plasma discharge with sputter deposition of a hydroxyapatite target, Mater. Lett., 2014, vol. 132, pp. 281–284.

    Article  CAS  Google Scholar 

  16. Siparsky, G.L., Degradation kinetics of poly(hydroxy) acids: PLA and PCL, Polymers from Renewable Resources: Biopolyesters and Biocatalysis, ACS Symposium Series, Washington, DC: American Chemical Society, 2000, chapter 16, pp. 230–253.

    Google Scholar 

  17. Evdokimov, P.V., Fadeeva, I.V., Fomin, A.S., Filippov, Ya.Yu., Koval’kov, V.K., Knotko, A.V., Putlyaev, V.I., and Barinov, S.M., Reinforcing a-TCP-based brushite cement with a polylactide scaffold, Materialovedenie, 2017, no. 8, pp. 30–33.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Klimashina.

Additional information

Original Russian Text © D.M. Zuev, E.S. Klimashina, P.V. Evdokimov, Ya.Yu. Filippov, V.I. Putlyaev, 2018, published in Neorganicheskie Materialy, 2018, Vol. 54, No. 1, pp. 94–103.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuev, D.M., Klimashina, E.S., Evdokimov, P.V. et al. Preparation of β-Ca3(PO4)2/Poly(D,L-lactide) and β-Ca3(PO4)2/Poly(ε-caprolactone) Biocomposite Implants for Bone Substitution. Inorg Mater 54, 87–95 (2018). https://doi.org/10.1134/S002016851801017X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002016851801017X

Keywords

Navigation