Skip to main content
Log in

Two-Phase Flows with Solid Particles, Droplets, and Bubbles: Problems and Research Results (Review)

  • HEAT AND MASS TRANSFER AND PHYSICAL GASDYNAMICS
  • Published:
High Temperature Aims and scope

Abstract

The computational-theoretical and experimental works on different types of two-phase flows are reviewed. The problems of two-phase flows and features of their study are considered. The basic characteristics of two-phase flows and the methods of their simulation are provided. The results of the study of two-phase flows with solid particles, droplets, and bubbles are outlined and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Varaksin, A.Yu., Romash, M.E., and Kopeitsev, V.N., Tornado, New York: Begell House, 2015.

    Google Scholar 

  2. Varaksin, A.Y., Turbulent Particle-Laden Gas Flows, New York: Springer, 2007.

    Book  Google Scholar 

  3. Varaksin, A.Yu., Collisions in Particle-Laden Gas Flows, New York: Begell House, 2013.

    Google Scholar 

  4. Varaksin, A.Yu., High Temp., 2013, vol. 51, no. 3, p. 377.

    Article  Google Scholar 

  5. Zaichik, L.I. and Pershukov, V.A., Fluid Dyn., 1996, vol. 31, no. 5, p. 635.

    Article  ADS  Google Scholar 

  6. Pialat, X., Simonin, O., and Villedieu, P., in Proc. ASME Fluids Eng. Summer Conf. FEDS2005-77078, Houston, USA, 2005.

  7. Zaichik, L.I., Skibin, A.P., and Solov’ev, S.L., High Temp., 2004, vol. 42, no. 1, p. 111.

    Article  Google Scholar 

  8. Alipchenkov, V.M. and Zaichik, L.I., Fluid Dyn., 2000, vol. 35, no. 6, p. 883.

    Article  Google Scholar 

  9. Buyevich, Y.A., J. Fluid Mech., 1971, vol. 49, p. 489.

    Article  ADS  Google Scholar 

  10. Lesieur, M. and Metais, O., Ann. Rev. Fluid Mech., 1996, vol. 28, p. 45.

    Article  ADS  Google Scholar 

  11. Kuerten, J.G.M. and Vreman, A.W., Phys. Fluids, 2005, vol. 17, 011701.

    Article  ADS  Google Scholar 

  12. Peskin, C., Acta Numer., 2002, vol. 11, p. 1.

    Article  MathSciNet  Google Scholar 

  13. Amsden, A.A. and Harlow, F.H., The SMAC method: Numerical technique for calculating incompressible fluid flows, Los Alamos Sci. Lab, 1970.

    Google Scholar 

  14. Belotserkovskii, O.M. and Davydov, Yu.M., Nestatsionarnyi metod krupnykh chastits dlya resheniya zadach vneshnei aerodinamiki (The Nonstationary Method of Large Particles to Solve External Aerodynamics Problems), Moscow: Vychislit. Tsentr Akad. Nauk SSSR, 1970.

  15. Hirt, C.W. and Nichols, B.D., J. Comput. Phys., 1981, no. 39, p. 201.

  16. Degtiar, V.G., Pegov, V.I., Moshkin, I.Yu., and Cheshko, A.D., High Temp., 2019, vol. 57, no. 5, p. 707.

    Article  Google Scholar 

  17. Khabakhpasheva, E.M. and Perepelitsa, B.V., J. Eng. Phys., 1968, vol. 14, no. 4, p. 319.

    Article  Google Scholar 

  18. Adrian, R.J., Ann. Rev. Fluid Mech., 1991, vol. 23, p. 261.

    Article  ADS  Google Scholar 

  19. Raffel, M., Willert, C., Kompenhans, J., and Werely, S., Particle Image Velocimetry: A Practical Guide, Berlin: Springer, 2007, 2nd ed.

    Book  Google Scholar 

  20. Elsinga, G.E., Scarano, F., Wieneke, B., and van Oudheusden, B.W., Exp. Fluids, 2006, vol. 41, p. 933.

    Article  Google Scholar 

  21. Scarano, F., Meas. Sci. Technol., 2013, vol. 24, 012001.

    Article  ADS  Google Scholar 

  22. Alekseenko, S.V., Dulin, V.M., Kozorezov, Y.S., and Markovich, D.M., Int. J. Heat Fluid Flow, 2008, vol. 29, p. 1699.

    Article  Google Scholar 

  23. Alekseenko, S.V., Antipin, V.A., Cherdantsev, A.V., Kharlamov, S.M., and Markovich, D.M., Phys. Fluids, 2009, vol. 21, 061701.

    Article  ADS  Google Scholar 

  24. Shestakov, M.V., Tokarev, M.P., and Markovich, D.M., Sci. Visualization, 2015, vol. 7, no. 3, p. 1.

    Google Scholar 

  25. Alekseenko, S.V., Dulin, V.M., Tokarev, M.P., and Markovich, D.M., Thermophys. Aeromech., 2016, vol. 23, no. 2, p. 301.

    Article  ADS  Google Scholar 

  26. Alekseenko, S.V., Abdurakipov, S.S., Hrebtov, M.Y., Tokarev, M.P., Dulin, V.M., and Markovich, D.M., Int. J. Heat Fluid Flow, 2018, vol. 70, p. 363.

    Article  Google Scholar 

  27. Varaksin, A.Yu., Mikhatulin, D.S., Polezhaev, Yu.V., and Polyakov, A.F., High Temp., 1995, vol. 33, no. 6, p. 911.

  28. Varaksin, A.Yu., Polezhaev, Yu.V., and Polyakov, A.F., High Temp., 1998, vol. 36, no. 5, p. 744.

    Google Scholar 

  29. Varaksin, A.Yu., Polezhaev, Yu.V., and Polyakov, A.F., Int. J. Heat Fluid Flow, 2000, vol. 21, no. 5, p. 562.

    Article  Google Scholar 

  30. Varaksin, A.Yu. and Ivanov, T.F., High Temp., 2004, vol. 42, no. 1, p. 73.

    Article  Google Scholar 

  31. Pakhomov, M.A., Protasov, M.V., Terekhov, V.I., and Varaksin, A.Yu., Int. J. Heat Mass Transfer, 2007, vol. 50, p. 2107.

    Article  Google Scholar 

  32. Varaksin, A.Yu., High Temp., 2015, vol. 53, no. 3, p. 423.

    Article  Google Scholar 

  33. Varaksin, A.Yu., High Temp., 2019, vol. 57, no. 4, p. 555.

    Article  Google Scholar 

  34. Akhmetbekov, Y.K., Alekseenko, S.V., Dulin, V.M., Markovich, D.M., and Pervunin, K.S., Exp. Fluids, 2010, vol. 48, p. 615.

    Article  Google Scholar 

  35. Alekseenko, S., Cherdantsev, A., Cherdantsev, M., Isaenkov, S., Kharlamov, S., and Markovich, D., Exp. Fluids, 2012, vol. 53, no. 1, p. 77.

    Article  Google Scholar 

  36. Polezhaev, Yu.V. and Yurevich, F.B., Teplovaya zashchita (Thermal Protection), Moscow: Energiya, 1976.

  37. Polezhaev, Yu.V. and Shishkov, A.A., Gazodinamicheskie ispytaniya teplovoi zashchity. Spravochnik (Gas-Dynamic Tests of Thermal Protection: Handbook), Moscow: Promedek, 1992.

  38. Mikhatulin, D.S., Polezhaev, Yu.V., and Reviznikov, D.L., Teploobmen i razrushenie tel v sverkhzvukovom geterogennom potoke (Heat Transfer and Destruction of Bodies in Supersonic Heterogeneous Flow), Moscow: Yanus-K, 2007.

  39. Mikhatulin, D.S., Polezhaev, Yu.V., and Reviznikov, D.L., Teplomassoobmen. Termokhimicheskoe i termoerozionnoe razrushenie teplovoi zashchity (Heat and Mass Transfer: Thermochemical and Thermoerosive Destruction of Thermal Protection), Moscow: Yanus-K, 2011.

  40. Nikitin, P.V., Teplovaya zashchita. Uchebnik dlya vysshei shkoly (Thermal Protection: Textbook), Moscow: Mosk. Aviats. Inst., 2006.

  41. Afanasyev, V.A., Nikitin, P.V., and Tushavina, O.V., High Temp., 2019, vol. 57, no. 4, p. 525.

    Article  Google Scholar 

  42. Strakhov, V.L., Kuz’min, I.A., and Bakulin, V.N., High Temp., 2019, vol. 57, no. 2, p. 250.

    Article  Google Scholar 

  43. Mironov, V.V. and Tolkach, M.A., High Temp., 2019, vol. 57, no. 2, p. 242.

    Article  Google Scholar 

  44. Astapov, A.N., Lifanov, I.P., and Rabinskii, L.N., High Temp., 2019, vol. 57, no. 5, p. 744.

    Article  Google Scholar 

  45. Zhestkov, B.E., Vaganova, M.L., Lebedeva, Yu.E., Sorokin, O.Yu., and Medvedev, P.N., High Temp., 2018, vol. 56, no. 3, p. 378.

    Article  Google Scholar 

  46. Zinchenko, V.I., Gol’din, V.D., and Zverev, V.G., High Temp., 2018, vol. 56, no. 5, p. 719.

    Article  Google Scholar 

  47. Dombrovsky, L.A., Reviznikov, D.L., and Sposobin, A.V., Int. J. Heat Mass Transfer, 2016, vol. 93, p. 853.

    Article  Google Scholar 

  48. Reviznikov, D.L., Sposobin, A.V., and Dombrovsky, L.A., Comput. Therm. Sci., 2015, vol. 7, no. 4, p. 313.

    Article  Google Scholar 

  49. Reviznikov, D.L., Sposobin, A.V., and Ivanov, I.E., High Temp., 2018, vol. 56, no. 6, p. 884.

    Article  Google Scholar 

  50. Reviznikov, D.L., Sposobin, A.V., and Ivanov, I.E., High Temp., 2020, vol. 58, no. 2, p. 280.

    Article  Google Scholar 

  51. Vatazhin, A.B., Grabovskii, V.I., and Likhter, V.A., Elektrogazodinamicheskie techeniya (Electro-Gas-Dynamic Flows), Moscow: Nauka, 1983.

  52. Rudinskii, A.V. and Yagodnikov, D.A., High Temp., 2019, vol. 57, no. 5, p. 753.

    Article  Google Scholar 

  53. Varaksin, A.Yu., Romash, M.E., and Kopeitsev, V.N., High Temp., 2010, vol. 48, no. 4, p. 588.

    Article  Google Scholar 

  54. Varaksin, A.Y., Romash, M.E., and Kopeitsev, V.N., AIP Conf. Proc., 2010, vol. 1207, p. 342.

    Article  ADS  Google Scholar 

  55. Varaksin, A.Yu., Romash, M.E., Kopeitsev, V.N., and Gorbachev, M.A., Int. J. Heat Mass Transfer, 2012, vol. 55, p. 6567.

    Article  Google Scholar 

  56. Varaksin, A.Yu., Romash, M.E., Kopeitsev, V.N., and Gorbachev, M.A., High Temp., 2011, vol. 49, no. 2, p. 310.

    Article  Google Scholar 

  57. Varaksin, A.Yu., Romash, M.E., Kopeitsev, V.N., and Gorbachev, M.A., High Temp., 2010, vol. 48, no. 6, p. 918.

    Article  Google Scholar 

  58. Varaksin, A.Yu., Protasov, M.V., and Teplitskii, Yu.S., High Temp., 2014, vol. 52, no. 4, p. 554.

    Article  Google Scholar 

  59. Varaksin, A.Yu., High Temp., 2017, vol. 55, no. 2, p. 286.

    Article  Google Scholar 

  60. Varaksin, A.Yu. and Zaichik, L.I., High Temp., 1998, vol. 36, no. 6, p. 983.

    Google Scholar 

  61. Zaichik, L.I. and Varaksin, A.Yu., High Temp., 1999, vol. 37, no. 4, p. 655.

    Google Scholar 

  62. Varaksin, A.Yu., Romash, M.E., and Kopeitsev, V.N., High Temp., 2009, vol. 47, no. 6, 836.

    Article  Google Scholar 

  63. Varaksin, A.Yu., Romash, M.E., and Kopeitsev, V.N., High Temp., 2010, vol. 48, no. 3, p. 411.

    Article  Google Scholar 

  64. Pokhil, P.F., Belyaev, A.F., Frolov, Yu.V., Logachaev, V.S., and Korotkov, A.I., Gorenie poroshkoobraznykh metallov v aktivnykh sredakh (Combustion of Powdered Metals in Active Media), Moscow: Nauka, 1972.

  65. Mitrofanov, V.V., Detonatsiya gomogennykh i geterogennykh system (Detonation of Homogeneous and Heterogeneous Systems), Novosibirsk: Inst. Gidrodin. im. M.A. Lavrent’eva, Sib. Otd. Ross. Akad. Nauk, 2003.

  66. Fedorov, A.V., Fomin, V.M., and Khmel’, T.A., Volnovye protsessy v gazovzvesyakh chastits metallov (Wave Processes in Gas-Suspended Particles of Metals), Novosibirsk: Parallel’, 2015.

  67. Fedorov, A.V. and Khmel, T.A., Combust., Explos. Shock Waves (Engl. Transl.), 2019, vol. 55, no. 1, p. 1.

  68. Lenkevich, D.A., Golovastov, S.V., Golub, V.V., Bocharnikov, V.M., and Bivol, G.Yu., High Temp., 2014, vol. 52, no. 6, p. 890.

    Article  Google Scholar 

  69. Bivol, G.Yu., Golovastov, S.V., and Golub, V.V., High Temp., 2017, vol. 55, no. 4, p. 561.

    Article  Google Scholar 

  70. Mirova, O.A., Bazhenova, T.V., and Golub, V.V., High Temp., 2020, vol. 58, no. 1, p. 140.

    Article  Google Scholar 

  71. Gidaspov, V.Yu. and Severina, N.S., High Temp., 2019, vol. 57, no. 4, p. 514.

    Article  Google Scholar 

  72. Mednikov, E.P., Akusticheskaya koagulyatsiya i osazhdenie aerozolei (Acoustic Coagulation and Deposition of Aerosols), Moscow: Akad. Nauk SSSR, 1963.

  73. Gubaidullin, D.A., Zaripov, R.G., Tkachenko, L.A., and Shaidullin, L.R., High Temp., 2019, vol. 57, no. 2, p. 283.

    Article  Google Scholar 

  74. Gubaidullin, D.A., Zaripov, R.G., Tkachenko, L.A., and Shaidullin, L.R., High Temp., 2019, vol. 57, no. 5, p. 768.

    Article  Google Scholar 

  75. Gubaidullin, D.A., Teregulova, E.A., and Gubaidullina, D.D., High Temp., 2019, vol. 57, no. 3, p. 414.

    Article  Google Scholar 

  76. Gubaidullin, D.A. and Zaripov, R.R., High Temp., 2019, vol. 57, no. 3, p. 444.

    Article  Google Scholar 

  77. Gubaidullin, D.A. and Zaripov, R.R., High Temp., 2019, vol. 57, no. 4, p. 600.

    Article  Google Scholar 

  78. Devisilov, V.A. and Sharai, E.Yu., High Temp., 2018, vol. 56, no. 4, p. 576.

    Article  Google Scholar 

  79. Frishberg, I.V., Kvater, L.I., Kuz’min, B.P., and Gribovskii, S.V., Gazofaznyi metod polucheniya poroshkov (Gas-Phase Method for Producing Powders), Moscow: Nauka, 1978.

  80. Woehl, T.J., Park, C., Evans, J.E., Arslan, I., Ristenpart, W.D., and Browning, N.D., Nano Lett., 2014, vol. 14, p. 373.

    Article  ADS  Google Scholar 

  81. Varaksin, A.Yu., High Temp., 2014, vol. 52, no. 5, p. 752.

    Article  Google Scholar 

  82. Smirnov, B.M., Phys.—Usp., 2011, vol. 54, no. 7, p. 691.

    Article  ADS  Google Scholar 

  83. Korenchenko, A.E., Vorontsov, A.G., Gel’chinskii, B.R., and Zhukova, A.A., High Temp., 2019, vol. 57, no. 2, p. 275.

    Article  Google Scholar 

  84. Vorontsov, A.G., Korenchenko, A.E., and Gel’chinskii, B.R., High Temp., 2019, vol. 57, no. 3, p. 368.

    Article  Google Scholar 

  85. Zalkind, V.I., Zeigarnik, Yu.A., Nizovskiy, V.L., Nizovskiy, L.V., and Shchigel, S.S., High Temp., 2018, vol. 56, no. 1, p. 153.

    Article  Google Scholar 

  86. Alekseev, V.B., Zalkind, V.I., Ivanov, P.P., Nizovskiy, V.L., and Schigel, S.S., High Temp., 2019, vol. 57, no. 4, p. 547.

    Article  Google Scholar 

  87. Alekseev, V.B., Zalkind, V.I., Nizovskii, V.L., Nizovskii, L.V., Khyamyalyainen, L.T., and Shchigel’, S.S., High Temp., 2018, vol. 56, no. 3, p. 418.

    Article  Google Scholar 

  88. Nazarov, A.D., Serov, A.F., and Terekhov, V.I., High Temp., 2011, vol. 49, no. 1, p. 116.

    Article  Google Scholar 

  89. Nazarov, A.D., Serov, A.F., and Terekhov, V.I., High Temp., 2014, vol. 52, no. 4, p. 576.

    Article  Google Scholar 

  90. Deich, M.E. and Filippov, G.A., Gazodinamika dvukhfaznykh sred (Gas Dynamics of Two-Phase Media), Moscow: Energoizdat, 1981.

  91. Chen, K.S., Hicker, M.A., and Noble, D.R., Int. J. Energy Res., 2005, vol. 29, p. 1113.

    Article  Google Scholar 

  92. Theodorakakos, A., Ous, T., Gavaises, M., Nouri, J.M., Nikolopoulos, N., and Yanagihara, H., J. Colloid Interface Sci., 2006, vol. 300, p. 673.

    Article  ADS  Google Scholar 

  93. Varaksin, A.Yu., High Temp., 2018, vol. 56, no. 2, p. 275.

    Article  Google Scholar 

  94. Grinats, E.S., Zhbanov, V.A., Kashevarov, A.V., Miller, A.B., Potapov, Yu.F., and Stasenko, A.L., High Temp., 2019, vol. 57, no. 2, p. 222.

    Article  Google Scholar 

  95. Kutateladze, S.S., Volchkov, E.P., and Terekhov, V.I., Aerodinamika i teplomassoobmen v ogranichennykh vikhrevykh potokakh (Aerodynamics and Heat and Mass Transfer in Limited Vortex Flows), Novosibirsk: Sib. Otd. Ross. Akad Nauk, 1987.

  96. Gupta, A.K., Lilley, D.G., and Syred, N., Swirl Flows, Tunbridge Wells: Abacus, 1984.

    Google Scholar 

  97. Khalatov, A.A., Teoriya i praktika zakruchennykh potokov (Theory and Practice of Swirl Flows), Kiev: Naukova Dumka, 1989.

  98. Pakhomov, M.A. and Terekhov, V.I., High Temp., 2018, vol. 56, no. 3, p. 410.

    Article  Google Scholar 

  99. Zel’dovich, Ya.B., Teoriya goreniya i detonatsii gazov (Theory of Gas Combustion and Detonation), Moscow: Akad. Nauk SSSR, 1944.

  100. Chernyi, G.G., Gazovaya dinamika (Gas Dynamics), Moscow: Nauka, 1988.

  101. Mitrofanov, V.V., Detonatsiya gomogennykh i geterogennykh system (Detonation of Homogeneous and Heterogeneous Systems), Novosibirsk: Inst. Gidrodin. im. M.A. Lavrent’eva, Sib. Otd. Ross. Akad. Nauk, 2003.

  102. Pirumov, U.G., Matematicheskoe modelirovanie v problemakh okhrany vozdushnogo basseina (Mathematical Simulation in Problems of Air Basin Protection), Moscow: Mosk. Aviats. Inst., 2001.

  103. Gidaspov, V.Yu., Moskalenko, O.A., and Severina, N.S., High Temp., 2018, vol. 56, no. 5, p. 751.

    Article  Google Scholar 

  104. Gubaidullin, D.A., Zaripov, R.G., Tkachenko, L.A., and Shaidullin, L.R., High Temp., 2018, vol. 56, no. 1, p. 146.

    Article  Google Scholar 

  105. Gubaidullin, D.A. and Teregulova, E.A., High Temp., 2018, vol. 56, no. 5, p. 758.

    Article  Google Scholar 

  106. Gubaidullin, D.A. and Tukmakov, D.A., High Temp., 2019, vol. 57, no. 6, p. 899.

    Article  Google Scholar 

  107. Tukmakov, A.L. and Tukmakova, N.A., High Temp., 2019, vol. 57, no. 3, p. 398.

    Article  Google Scholar 

  108. Struleva, E.V., Komarov, P.S., and Ashitkov, S.I., High Temp., 2018, vol. 56, no. 5, p. 648.

    Article  Google Scholar 

  109. Struleva, E.V., Komarov, P.S., and Ashitkov, S.I., High Temp., 2019, vol. 57, no. 4, p. 486.

    Article  Google Scholar 

  110. Struleva, E.V., Komarov, P.S., and Ashitkov, S.I., High Temp., 2019, vol. 57, no. 5, p. 659.

    Article  Google Scholar 

  111. Rusanov, A.I., Fazovye ravnovesiya i poverkhnostnye yavleniya (Phase Equilibria and Surface Phenomena), Leningrad: Khimiya, 1967.

  112. Lushnikov, A.A., Dokl. Akad. Nauk SSSR, 1977, vol. 234, p. 97.

    Google Scholar 

  113. Tovbin, Yu.K. and Zaitseva, E.S., High Temp., 2018, vol. 56, no. 3, p. 366.

    Article  Google Scholar 

  114. Kovaleva, L.A., Minnigalimov, R.Z., and Zinnatullin, R.R., Energy Fuels, 2011, vol. 25, no. 8, p. 3731.

    Article  Google Scholar 

  115. Kovaleva, L.A., Minnigalimov, R.Z., and Zinnatullin, R.R., High Temp., 2008, vol. 46, no. 5, p. 728.

    Article  Google Scholar 

  116. Fang, C.S. and Lai, M.C., in Proc. 14th National Industrial Energy Technology Conf., Houston, TX, 1992, p. 125.

  117. Abdurahman, H.N., Rosli, M.Y., and Azhary, H.N., World Acad. Sci., Eng. Technol., 2010, vol. 62, p. 188.

    Google Scholar 

  118. Kovaleva, L.A., Zinnatullin, R.R., Mullayanov, A.I., Mavletov, M.V., and Blagochinnov, V.N., High Temp., 2013, vol. 51, no. 6, p. 870.

    Article  Google Scholar 

  119. Kovaleva, L.A., Zinnatullin, R.R., Minnigalimov, R.Z., Blagochinnov, V.N., and Mullayanov, A.I., Neftepromysl. Delo, 2013, no. 6, p. 45.

  120. Kovaleva, L.A., Musin, A.A., and Fatkhullina, Yu.I., High Temp., 2018, vol. 56, no. 2, p. 234.

    Article  Google Scholar 

  121. Mudawar, I. and Bowers, H.B., in Convective Flow Boiling, Chen, J.C., Ed., New York: Tailor & Francis, 1995, p. 117.

    Google Scholar 

  122. Vasil’ev, N.V., Zeigarnik, Yu.A., Khodakov, K.A., and Fedulenkov, V.M., High Temp., 2015, vol. 53, no. 6, p. 837.

    Article  Google Scholar 

  123. Kim, D.E., Yu, D.I., Jerng, D.W., Kim, M.H., and Ahn, H.S., Exp. Therm. Fluid Sci., 2015, vol. 66, p. 173.

    Article  Google Scholar 

  124. Vasil’ev, N.V., Varaksin, A.Yu., Zeigarnik, Yu.A., Khodakov, K.A., and Epel’fel’d, A.V., High Temp., 2017, vol. 55, no. 6, p. 880.

    Article  Google Scholar 

  125. Serdyukov, V.S., Surtaev, A.S., Pavlenko, A.N., and Chernyavskiy, A.N., High Temp., 2018, vol. 56, no. 4, p. 546.

    Article  Google Scholar 

  126. Dedov, A.V., Zabirov, A.R., Sliva, A.P., Fedorovich, S.D., and Yagov, V.V., High Temp., 2019, vol. 57, no. 1, p. 63.

    Article  Google Scholar 

  127. Sirotkina, A.L., Fedorovich, E.D., and Sergeev, V.V., High Temp., 2018, vol. 56, no. 5, p. 732.

    Article  Google Scholar 

  128. Ota, T., Appl. Mech. Rev., 2000, vol. 53, p. 219.

    Article  ADS  Google Scholar 

  129. Terekhov, V.I., Yarygina, N.I., and Zhdanov, R.F., Int. J. Heat Mass Transfer, 2003, vol. 46, p. 4535.

    Article  Google Scholar 

  130. Pakhomov, M.A. and Terekhov, V.I., High Temp., 2018, vol. 56, no. 1, p. 52.

    Article  Google Scholar 

  131. Pakhomov, M.A. and Terekhov, V.I., High Temp., 2019, vol. 57, no. 1, p. 89.

    Article  Google Scholar 

  132. Woezel, J.L. and Ewing, M., Explosion sounds in shallow water, in Propagation of Sound in the Ocean, New York: Geol. Soc. Am., 1948, vol. 27.

    Google Scholar 

  133. Brekhovskikh, L.M., Volny v sloistykh sredakh (Waves in Layered Media), Moscow: Nauka, 1975.

  134. Brekhovskikh, L.M. and Lysanov, Yu.P., Teoreticheskie osnovy akustiki okeana (Theoretical Foundations of Ocean Acoustics), Leningrad: Gidrometeoizdat, 1982.

  135. Nigmatulin, R.I., Shagapov, V.Sh., Gimaltdinov, I.K., and Galimzyanov, M.N., Dokl. Phys., 2001, vol. 46, p. 445.

    Article  ADS  Google Scholar 

  136. Shagapov, V.Sh., Galimzyanov, M.N., and Vdovenko, I.I., High Temp., 2019, vol. 57, no. 2, p. 256.

    Article  Google Scholar 

  137. Shagapov, V.Sh., Galimzyanov, M.N., and Vdovenko, I.I., High Temp., 2019, vol. 57, no. 3, p. 425.

    Article  Google Scholar 

  138. Shagapov, V.Sh., Galimzyanov, M.N., and Vdovenko, I.I., High Temp., 2019, vol. 57, no. 5, p. 712.

    Article  Google Scholar 

  139. Rayleigh, L., Philos. Mag., 1917, vol. 34, no. 200, p. 94.

    Article  Google Scholar 

  140. Zel’dovich, Ya.B. and Raizer, Yu.P., Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii (Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena), Moscow: Nauka, 1966.

  141. Hunter, C., J. Fluid Mech., 1960, vol. 8, no. 2, p. 241.

    Article  ADS  Google Scholar 

  142. Zababakhin, E.I. and Zababakhin, I.E., Yavleniya neogranichennoi kumulyatsii (Phenomena of Unlimited Cumulation), Moscow: Nauka, 1988.

  143. Brushlinskii, K.V. and Kazhdan, Ya.M., Usp. Mat. Nauk, 1963, vol. 18, no. 2, p. 3.

    Google Scholar 

  144. Kraiko, A.N., Prikl. Mat. Mekh., 2007, vol. 71, no. 5, p. 744.

    Google Scholar 

  145. Il’mov, D.N. and Cherkasov, S.G., High Temp., 2012, vol. 50, no. 5, p. 631.

    Article  Google Scholar 

  146. Morenko, I.V., High Temp., 2019, vol. 57, no. 5, p. 718.

    Article  Google Scholar 

  147. Sychev, A.I., Combust., Explos. Shock Waves (Engl. Transl.), 1985, vol. 21, p. 250.

  148. Sychev, A.I., Combust., Explos. Shock Waves (Engl. Transl.), 1985, vol. 21, p. 365.

  149. Kuznetsov, N.M. and Kopotev, V.A., Dokl. Akad. Nauk SSSR, 1989, vol. 304, no. 4, p. 850.

    Google Scholar 

  150. Zhdan, S.A., Combust., Explos. Shock Waves (Engl. Transl.), 2002, vol. 38, p. 327.

  151. Nigmatulin, R.I., Shagapov, V.Sh., Gimaltdinov, I.K., and Akhmadullin, F.F., Dokl. Phys., 2003, vol. 48, no. 2, p. 75.

    Article  ADS  Google Scholar 

  152. Nigmatulin, R.I., Shagapov, V.Sh., Gimaltdinov, I.K., and Bayazitova, A.R., Dokl. Phys., 2005, vol. 50, p. 405.

    Article  ADS  Google Scholar 

  153. Sychev, A.I., Tech. Phys., 2017, vol. 87. Vyp. 4, p. 523.

  154. Sychev, A.I., High Temp., 2019, vol. 57, no. 2, p. 263.

    Article  Google Scholar 

  155. Gimaltdinov, I.K. and Lepikhin, S.A., High Temp., 2019, vol. 57, no. 3, p. 420.

    Article  Google Scholar 

  156. Nigmatulin, R.I., Aganin, A.A., Il’gamov, M.A., and Toporkov, D.Yu., High Temp., 2019, vol. 57, no. 2, p. 228.

    Article  Google Scholar 

  157. Bennet, R.J., in Water and Water Pollution Handbook, Ciaccio, L.L., Ed., New York: Marcel Dekker, 1971, p. 261.

    Google Scholar 

  158. Babaeva, N.YU., Berry, R.S., Naidis, G.V., Smirnov, B.M., Son, E.E., and Tereshonok, D.V., High Temp., 2016, vol. 54, no. 5, p. 745.

    Article  Google Scholar 

  159. Smirnov, B.M., Babaeva, N.Yu., Naidis, G.V., Panov, V.A., Son, E.E., and Tereshonok, D.V., High Temp., 2019, vol. 57, no. 2, p. 286.

    Article  Google Scholar 

  160. Degtyar’, V.G. and Pegov, V.I., Gidrodinamika podvodnogo starta raket (Hydrodynamics of Underwater Rocket Launch), Moscow: Mashinostroenie, 2009.

Download references

Funding

The work was supported by the Russian Foundation for Basic Research, project no. 18-08-01382.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Varaksin.

Additional information

Translated by E. Oborin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varaksin, A.Y. Two-Phase Flows with Solid Particles, Droplets, and Bubbles: Problems and Research Results (Review). High Temp 58, 595–614 (2020). https://doi.org/10.1134/S0018151X20040161

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X20040161

Navigation