Skip to main content
Log in

Investigation of Mechanical Properties and Structure of Irradiated Basalt Composites Using IR Spectrometry

  • RADIATION CHEMISTRY
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

The work is concerned with the study of a relatively new prospective composite material based on basalt fibers. In this work, an attempt has been made to investigate in more depth the structural changes that occur during irradiation of basalt composite samples by gamma ray streams and which affect the mechanical properties. The changes that have occurred during radiation modification have been evaluated by mechanical tests and infra-red spectrum investigations. The impact of the material structure on the elastic properties of the irradiated basalt composite is reasonably assumed. It is discovered that the modification of the material by gamma irradiation leads to an increase in the elastic properties of the basalt composite. At the same time the value of fracture strain decreases. Analysis of the IR spectrum in the high-frequency region showed that the radiation exposure results in continuing polymerization reactions and intermolecular cross-linking. However, when the radiation dose reaches 15 Mrad, there is a reduction in the number of bonds in the low-frequency region of the spectrum, which, according to the authors, corresponds to a breakdown of the aluminum-silicon-oxygen and organo-silicate frameworks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

DATA AVAILABILITY STATEMENTS

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

REFERENCES

  1. Osnos, M.S. and Osnos, S.P., Sostavn. Mir, 2019, no. 1, p. 58.

  2. Osnos, S.P., Rozhkov, A.I., and Fedotov, A.A., Sostavn. Mir, 2022, no. 2, p. 18.

  3. Dhand, V., Mittal, G., Rhee, K.Y., Park, S.J., and Hui, D., Compos., Part B: Eng., 2015, vol. 73, p. 166.

    Article  CAS  Google Scholar 

  4. Szabo, P.J., Reti, T., and Czigany, T., Mater. Sci. Forum, 2008, vol. 589, p. 7.

    Article  Google Scholar 

  5. Dorigato, A. and Pegoretti, A., J. Compos. Mater., 2012, vol. 46, no. 15, p. 1773.

    Article  Google Scholar 

  6. Liu, H., Yu, Y., Liu, Y., Zhang, M., Li, L., Ma, L., Sun, Y., and Wang, W., Polymers, 2022, vol. 14, p. 2376.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Liu, Y., Zhang, M., Liu, H., Tian, L., Liu, J., Fu, C., and Fu, X., Polymers, 2022, vol. 14, p. 2443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yan, L., Chu, F., Tuo, W., Zhao, X., Wang, Y., Zhang, P., and Gao, Y., Polym. Polym. Compos., 2021, vol. 29, no. 9, p. 1612.

    CAS  Google Scholar 

  9. Fitzgerald, A., Pround, W., Kandemir, A., Murphy, R.J., Jesson, D.A., Trask, R.S., Hamerton, I., and Longana, M.L., Sustainability, 2021, vol. 13, no. 3, p. 1160.

    Article  CAS  Google Scholar 

  10. Chuvashov, Yu., Yashchenko, O., Diduka, I., and Gulik, V., Zh. Nat. Voloknakh, 2020, vol. 19, no. 8.

  11. Baptista, R., Marat-Mendes, R., Fortes, C., Gil, R., and Queiroga, B., 6° Congresso Nacional de Biomecânica (The 6th Portuguese Congress on Biomechanics), Ruben, R.B. et al., Eds., Monte Real, Leiria, 2015, p. 135.

  12. Karavaeva, E.M., Rogozhnikov, G.I., Nyashin, Y.I., and Nikitin, V.N., Russ. J. Biomech., 2015, vol. 19, no. 1, p. 106.

    Google Scholar 

  13. Okhlopkova, A.A., Vasil’ev, S.V., and Gogoleva, O.V., Arktika 21 Vek., Tekh. Nauki, 2014, vol. 1, no 2, p. 11.

    Google Scholar 

  14. Starovoitova, I.A., Zykova, E.S., Suleimanov, A.M., et al., Izv. KGUAE, 2016, no. 3, p. 217.

  15. Efanova, V.V., Ukr. Khim. Zh., 2000, vol. 66, no. 3, p. 59.

    CAS  Google Scholar 

  16. Arzamastsev, S.V., Artemenko, S.E., and Pavlov, V.V., Plastmassy, 2011, no. 5, p. 60.

  17. Shcherbakov, A., Mostovoy, A., Bekeslev, A., Burmistrov, I., Arzamastsev, S., and Lopukhova, M., Polymers, 2022, vol. 14, no. 21, p. 4594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bekeslev, A., Mostovoy, A., Tastanova, L., Kadykova, Y., Kalganova, S., and Lopukhova, M., Polymers, 2020, vol. 12, no. 7, p. 1437.

    Article  Google Scholar 

  19. El-Hadi, Z.A., J. Solid State Chem., 2002, vol. 163, no. 2, p. 351.

    Article  CAS  Google Scholar 

  20. Artemenko, S.E. and Kadykov, Yu.A., Plastmassy, 2009, no. 1, p. 11.

  21. Kudinov, V.V., Korneeva, N.V., Krylov, I.K., et al., Fiz. Khim. Obrab. Mater., 2008, no. 2, p. 32.

  22. Makarevich, Yu.L., Oniskiv, V.D., and Stolbov, V.Yu., Lect. Notes Netw. Syst., 2022, vol. 315, p. 464.

    Article  Google Scholar 

  23. Makarevich, Yu.L., Oniskiv, V.D., Stolbov, V.Yu., and Gitman, I., Mech. Compos. Mater., 2022, vol. 58, no. 1, p. 43.

    Article  CAS  Google Scholar 

  24. Skroznikov, S.V., Zelentsova, N.S., Lyamkina, D.E., et al., Dostizh. Obl. Khim. Khim. Tekhnol., 2010, vol. 24, no. 3, p. 77.

    Google Scholar 

  25. Al-Harthi, M.A., Polym. Compos., 2014, vol. 35, no. 10, p. 2036.

    Article  CAS  Google Scholar 

  26. Mussaeva, M.A. and Ibragimova, E.M., Tech. Phys. Lett., 2019, vol. 45, no. 2, p. 155.

    Article  CAS  Google Scholar 

  27. Ibragimova, E.M., Salakhitdinov, A.N., Salakhitdinova, M.K., and Yusupov, A.A., J. Appl. Spectrosc., 2018, vol. 85, no. 2, p. 255.

    Article  CAS  Google Scholar 

  28. Singha, K., Int. J. Text. Sci., 2012, vol. 1, no. 4, p. 19.

    Google Scholar 

  29. Mayo, D.W., Miller, F.A., and Hannah, R.W., Course Notes on the Interpretation of Infrared and Raman Spectra, Hoboken, NJ: Wiley–Interscience, 2003.

    Google Scholar 

  30. Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds, New York: Wiley, 1986, 4th ed.

    Google Scholar 

  31. Askadskii, A.A. and Matveev, Yu.I., Khimicheskaya struktura i fizicheskie svoistva polimerov (Chemical Structure and Physical Properties of Polymers), Moscow: Khimiya, 1983.

    Google Scholar 

  32. Nurullaev, E.M., and Oniskiv, V.D., High Energy Chem., 2021, vol. 55, no. 2, p. 150.

    Article  CAS  Google Scholar 

  33. Nurullaev, E.M., Oniskiv, V.D., Astaf’eva, S.A., and Lebedeva, E.A., High Energy Chem., 2022, vol. 56, no. 6, p. 423.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors express gratitude to the Candidate of Chemical Sciences S.A. Astafieva (IHTT UrO RAS) for fruitful discussion of research results and participation in a number of experiments.

Funding

This research was carried out with the financial support of the Ministry of Science and Higher Education of the Russian Federation in the framework of the program of activities of the Perm Scientific and Educational Center “Rational Subsoil Use” and of the Government of the Perm Region in the framework grant no. С-26/581.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through the contribution of all authors. All authors discussed the results, reviewed, and approved the final version of the manuscript.

Corresponding author

Correspondence to V. Yu. Stolbov.

Ethics declarations

The authors declared no potential conflicts of interest with respect to the research, authorship, and publication of the article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oniskiv, V.D., Stolbov, V.Y. & Makarevich, Y.L. Investigation of Mechanical Properties and Structure of Irradiated Basalt Composites Using IR Spectrometry. High Energy Chem 57, 410–417 (2023). https://doi.org/10.1134/S0018143923050090

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143923050090

Keywords:

Navigation